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INTRODUCTION

The term extensive aquifers is used to denote aquifers whose horizontal dimensions
are much larger than their thicknesses, so that the losses of head due to the vertical
velocity components may be neglected. The term groundwater hydraulics is used in
the sense of deductive theory. '

A series of strongly schematized problems is analysed with a view to applying the
results in groundwater engincering. The publication is a text-book, not a manual,
stress being laid on didactics, not on completeness or detail. The mathematical
derivations are given in full, starting from the fundamental physical laws; mathemati-
cal methods, however, are not explained. As a rule, a problem is discussed in four
stages: posing the problem, formulating the solution, deriving the formulae and analys-
ing the result. The mathematical derivations are marked by a disjoined vertical line;
they should be omitted at first reading, when the reader’s attention should remain
concentrated on the main issue of the theory, '

The basic laws and assumptions adopted are more or less consecrated by tradition.
They have, however, a limited range of validity, This range has been ¢stablished for
some laws (e.g. the law of linear resistance). In other instances it forms the subject of
modern investigations (e.g. the law relating the stored or released quantities of water
to the rise or fall of the water table, where the notion of effective porosity is only an
approximation). This physical side of the problem is not treated. 1t is thought too
important to be discussed in complementary remarks to an essentially deductive study.
If it were to be treated comprehensively, it should be made the subject of a separate
study.

The use to be made of the solutions of schematized problems may be summarized in
the following points;



1. Since flow of groundwater is hidden to the eye, we have no everyday experience
with it, as we have with mechanical phenomena; the best way to get acquainted with
the nature of the phenomena is to solve, as an exercise, a series of elementary problems.
We are also blind to the magnitude of quantities involved in problems of ground-
water flow; to estimate them properly we need orientating calculations on strongly
schematized models.

2. Physical formulas have a limited range of validity. When, for example, a phenom-
enon depends on three Ffactors, A, B, and C, it depends on A alone when A is pre-
dominant, on A and B when C ig negligible. Posing the problem requires an apprecia-
tion of the relative magnitude of the relevant quantities. This is another reason for
starting with orientating calculations.

3. Engincering calculations generally cover two phases. First the hydraulic character-
istics of the aquifer are determined on the basis of observations and tests; then the
dimensions and flow rates of the design are determined on the basis of these character-
istics. In both phases it is recommended that rough, orientating calculations be used
to start with, and that they be repeated once or several times on a more refined basis.
The reality should be compared with standard flow systems, preferably chosen so as
to comprise the reality between conditions that are too favourable and too unfavour-
able. This is the principle usually adopted for the calculation of steel and concrete
constructions.

4. Groundwater calculations are genérally rough, because the underground is irregu-
lar, because tests are costly, and because some basic quantities, such as evaporation,
are only approximately known. This stresses the importance of elementary calcula-
tions above refined ones. The use of computers is justified only when the observations

and tests have been adequate to obtain precise results, and this precision is needed for
the design. Another use of computers is to solve standard problems that are too diffi-

cult for mathematical analysis.

5. The basic laws of groundwater hydraulics are linear. Thus, in problems depending
on several factors, the influence of each factor may be calculated apart, and the results
added. This principle, thai of superposition, will be the guideline throughout the
theory. It makes understanding easy, and allows complicated calculations to be split
up into elementary ones.

Part of the theory has been acquired from literature; part is the result of my own stu-
dies. Foreign elements have not been presented in the form chosen by the authors, All
elements have been merged into greater units of thought, in which process they have
lost their individuality. Each chapter forms a unit; the chapters form a sequence: the
publication should be read as a whole,

Since foreign elements have not been given in their original form, and all derivations
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are given in full, no reference is made to the original publications. A list of compre-
hensive modern books is added, to be used for further study as well as for detailed
reference. However, the names of G. J. de Glee, 1. P. Mazuore, J. van Oldenborgh, and
J. H. Steggewentz should be mentioned, since their work has been fundamental for
‘the present studies.

Thanks are due to G. de Josselin de Fong, and A. Verruijt for critical remarks, as well
as to N. A. de Ridder for his critical reading of the manuscript and to Mrs. M, F, L.
Wiersma-Roche for linguistic corrections.

Wageningen, October 1968 - J.H.E.
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NOTES AND LIST OF SYMBOLS

1. A disjoined vertical line marks the derivations.

2. The text alway refers to the figure indicated at the beginning of the paragraph.
3. The following conventions are used in the figures

shaded: impermeable

dotted: low permeability

blank: permeable

4, Throughout this study the potential is defined as a pressure, while most engineers
are accustomed to defining it as a height (length dimension). As long as one-fluid is
concerned, they may read the fermulas in their own interpretation, considering the
potential ¢ as a height, the permeability k as a velocity, and reading for u the effective
pore space, a dimensionless quantity. Tn the theory of two-fluid systems, however, ail
symbols must be read according to the definitions of this study.

5. All formulas are dimensionless. They apply to any consistent system of units
{founded on one unit for the mass, one unit for the length, and one unit for the time).
0. Where references are made to other parts of the text, the main wnits, 1 to 7, are
called chapters; the smaller units, indicated by one or two decimal figures are called

" sections,

7. Most symbols are used throughout the text, often without explanation. Their
meaning and dimension are listed below, and reference is made to the section in
which they are introduced. As a rule the following distinctions are made:

Without prime: related to the fresh water in the aquifer.

With prime: related to the low-permeability top layer.

With double prime: related to the salt water in the aquifer,

12




Aguifer in one-fluid problems

RL
xand y

g2 MmN

by =

Reference level.

Horizontal coordinates.

Vertical coordinate.

Time. ‘

Petiod of periodic movements.

Equal to 2;, used in sin @, defining sinusoidal variations. [¢—1)

(Sectlon 5.2

Potential, defined as a pressurc [mf~t¢—2] (Section 1.1. 1)

Specific weight of water. [mf~*172]

Piezometric height. [{] (Section 1.1.1).

Permeability, generally in a horizontal direction. [»~1/%] (Section 1.1.1).
Thickness of the water body contained in the aquifer. Either constant or
variable. [/]. '

Transmissivity of the aquifer for horizontal flow, [#~1/%¢] (Section 1.1.2).
Effective porosity. Volume of water released from or taken inte storage
per unit area of the aguifer due to variation of the phreatic level by unit
height. Dimensionless. (Sections 1.2 and 6.3.1).

Volume of water released from or taken into storage per unit area of the
aquifer, due to a change of the water level corresponding to unit potential.

= ? [~ 11242] (Section 1.2).

Velocity in the sense of the quantity of water passing per unit time through
a unit area including the section over the grains. [i~'] (Section 1.1.1).
Quantity of flow through unit width of an aquifer with thickness D.
g = vD.[I*t7 ') (Section 1.1.2).

Quantity of flow tﬁrough an arbitrary cross-section, e.g. the flow towards
a well. [/*+~ 1] (Section 1.1.2).

Recharge of the aquifer from the upper, nonsaturated soil layers, as a
volume of water per unit time and per unit area of theraquifer. [/#~!]
{Section 1.2).

Mathematical concept, introduced to make a general formulation of the
law of continuity possible: the volume of water joining the groundwater
flow in the aquifer per unit time per unit area of the aquifer, as a conse-
quence of both recharge and fall of the piezometric level. [/t~*] (Section
1.2).
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Low-permeability top layer

r

@
Py
k'
D

KD’
m.f

r

i

Potential (Section 1.1.2).

Piezometric height (function of z) (Section 1.1.2).

Permeability in vertical direction {Section 1.1.2).

Thickness of the water layer contained in the top layer, always considered
constant over the area of the aquifer (Section 1.1.2).

Transmissivity of the top layer for vertical flow.

Equivalent of m for the top layer (Section 1.2).

Equivalent of u for the top layer (Section 1.2).

Aquifer in two-fluid systems

RL
SL
y and y
¢ and ¢"
hand 4"

Dand D'
D,
Z

v and v

g and ¢°

Q and @”
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Reference level.

Sea level.

Specific weight of fresh and salt water respectively, (Section 6.1.1).
Potentials of fresh and salt water respectively (Section 6.1.3).
Piczometric height of fresh and salt water respectively (The piezometer
tube filled with fresh and salt water respectively) (Section 6.1.3).
Thickness of fresh and salt water body respectively (Section 6.2.1).

Sum of D and D"

Elevation of the interface above reference level (negative when reference
level coincides with sea level) (Section 6.1.3).

Effective porosity. Volume of water released from or taken into storage
per unit area of the aquifer, due to variation by unit height of the phreatic
surface or the interface. Dimensionless. (Sections 1.2 and 6.3.1),

Same as for one-fluid system. Related to ¢. For the water surface only; not
for the interface.

Horizontal velocities, or velocities parallel to the interface in fresh and
salt water (volume of water displaced per unit time per unit section,
including the section over the grains) (Section 6.1.3).

Quantities of Aow per unit width over the thickness of the fresh and salt
water body respectively. g = vD; ¢" = v'D" (Section 6.2.1).

Quantities of flow through an arbitrary section in fresh and salt water
respectively. [{2r—'].




. FUNDAMENTALS

[.1. THE LAW OF LINEAR RESISTANCE

1.1.L. Formuldation of the law

Water flowing through a porous medium loses energy. The quantity of energy per
unit volume of water is called the potential ¢, for reasons to be specified below. Its
dimension [m{~'#~?] is that of a pressure. _

There is no unifermity in the definition of the potential. In engineering practice it is
motre common to define ¢ as the quantity of energy per unit weight of the water, The
potential thus defined has the dimension of a length, and can be shown graphically as
an elevation above a plane of reference. This definition, however, cannot be admitted
in the foliowing studies, as it would complicate the formulas of two-fluid problems.
For fresh water problems all formulas describing the flow systems are identical in
both practices, but with a different meaning of the symbols.

Figure 1. — The potential ¢ at a certain point P of the aquifer is given by

@=p+7y:z

where p is the pressure and vy the specific weight of the water at P; z is the elevation of
P above reference level RL. This expression is taken from the theory of general
hydraulics: it will not be derived here. In its general form it contains still a third term
(¢v?)/2, depending on the velocity of the water, where p is the density and v the velocity
of the water at P. This term can be ignored in groundwater hydraulics, where velocities
are always low.

A piezometer is a simple tube, placed in the ground and screened over a certain

15




Fig. 1

length at its bottom end. For theoretical considerations the screen may conveniently
be reduced to a point. The piezometric height # at this point is the elevation of the
water level in the tube above the reference level RL. The potential ¢ is related to the
piezometric height i by

¢ =h

| " The pressure at P corresponds to the water column % — z inside the tube; hence
| p = ylh — 2). Substitution of this value for p in the expression ¢ = p + yz
| gives @ = yA.

The discharge ¢ is the quantity of water flowing per unit time through a small section
S perpendicular to the flow, Tt is customary to take for S the rough area over both
poresand grains. The quantity v = /S, therefore, does not correspend to the average
velocity of the water particles. Yet it is customary to call v the velocity of the water.
Throughout the study laminar flow will be assumed. In nature this condition is usually
satisfied. Exceptions may exist locally where the velocities are particularly high, such
as near pumped wells or where fresh groundwater flows into the sea. In laminar flow
the losses of energy are proportional to the velocities. This law of linear resistance is
known as Darcy's law, when applied to groundwater. Tt may be written as:

é
= =k, =i
dx ay ¥4
where & is a constant, and v, v, and v, are the components of the velocity in the direc-
tions of the codrdinate axes x, y and z. For an arbitrary direction §

x

_i 2
ds

which will not be proved here.
Formulas of this type are well known in physics. Any quantity ¢ satisfying them is
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called a potential. If it defines a velocity, as in the present case, it is called a velogity
potential; if a force, a force potential, etc. Consequently the theory of groundwater
flow appears as a particular case of potential theory.

The constant &, as defined by these formulas, has the dimension [~ '¢/*}. In current
engineering practice, where the potential ¢ is defined as a length, and & is determined
by the same formulas, k takes the dimension of a velocity. If values of & are given as
velocities, they must be divided by the specific weight of the water, té obtain the cor-
responding values in the practice to be followed here.

The permeability & depends on the characteristics of the soil, and the viscosity # of
the water, Strictly speaking, it is improper to call it the permeability of the soil, as it
depends also on the properties of the water. Other names have been proposed, but
since there is no uniformity on this point, simply the most current term, although
improper, will be used.

As can be shown from the theory of Dimensional Analysis or from more thorough
theoretical considerations, the following relationship exists:

k=kel
it .

. This formula should be read with the idea of similitude in mind. If two ideal scale
models are imagined, composed of grains of the same form and arrangement, but of
different size, the geometrical scale of either model may be determined by any length
dimension 4 of the grains, e.g. the average grain size, defined in any conventional way.
The models may be filled with fluids of different viscosity 5. The formula then indicates
the relationship between 4, & and # in each model. The coefficient £, is a dimensionless
constant, depending on the form of the grains and the definition of 4, and is the same
in both models. It can be seen from this relationship that k is equal for both salt and
fresh water filling the same medium, if the difference in viscosity between the fluids is
neglected,

In the following studies homogeneous soil and water will be assumed. Where in
Chapters 6 and 7 two-fluid systems are described, the property of homogeneity will
apply ta each of the fluids separately. Strictly speaking, granular material is not homo-
geneous. The term will be used with respect to the average values of the soil charac-
teristics (pore space, permeability, ete.) in units of volume, large compared with the
dimensions of the grains, and small compared with those of the aquifer. Used in this
sense, the word homogeneity expresses that these average values of the soil charac-
teristics are the same throughout the aquifer. As a consequence, the hydraulic quanti-
ties (pressure, velocity, etc.) are continuous functions of the cotrdinates. In nature the
condition of homogeneity is in general not fully satisfied. The main exceptions are:

17




Fig. 2 %////////%

a b [

- Sandy aquifers are usually made vp of aliernating layers of sediments having
different properties. They may coniain layers of fine material, or even lenses of silt or
clay, which impede the vertical water movement. Natural aquifers usually have a
greater permeability in horizontal than in vertical direction.

— Limestone, if finely fissured, has the characteristics of a permeable medium, but its
degree of fissuring is seldom uniform throughout the aquifer.

— The density and viscosity of water vary with temperature. In t]-uck aquifers the
increase in temperature with depth plays a role.

— The viscosities of fresh and salt water are stightly different. This factor will beignored
in Chapters 6 and 7. '

1.1.2. Extensive aguifers
The following studies will deal alternately with three types of aquifers: confined,
partly confined, and phreatic, to be described below. As a general assumption they
rest on a horizontal, impermeable base. Some special cases will be considered where
the aguifer dips slightly. :
Figure 2a represents a confined aquifer, covered with a horizontal impermeable layer,
and saturated with water under pressure. The thickness P of the water layer is constant

- and equal to that of the aquifer.

Figure 2b represents a partly confined aquifer, i.e. covered by a layer of low-permea-
bility, and saturated with water under pressure, the phreatic level being in the top
layer. The term low-permeability will be used in the sense of low compared with the
permeability of the aquifer, but not zero. Since the horizontal flow in the top layer
will be neglected, as will be explained below, the lateral water movement depends on
the thickness D of the aquifer, which is a constant, as in the previous case.

In Figure 2¢ the groundwater has a free surface. For the sake of simplicity no capillary
fringe is considered. Groundwater having a free surface is called phreatic water; the
surface, the phreatic surface. The thickness D of the water body is variable from one
point to another. For exact calculations the variations of @ are considered. For
approximate calculations the variations in water height are neglected in ‘comparison

18




Fig. 3 a

f
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with the total thickness of the water-layer. The variable thickness is then replaced by
its average value D, This assumption is frequently made in engineering practice.

In all cases the thickness of the aquifer is assumed to be small compared with its
horizontal dimensions. This property s indicated by the term extensive aquifers. The
water transport through such aquifers is mainly horizontal, The horizontal velocity
components are generally greater than the vertical components and since, moreover,
the water moves horizentally over much greater distances than it does vertically, the
losses of energy in a horizontal direction are much greater than in a vertical direction,
so that as a basic assumption for all following studies, the vertical energy losses are
neglected. This assumption may be considered either as an approximation, applicable
to an aquifer composed of isotropic material, or as an exact characteristic of an aquifer
composed of anisotropic material, having a permeability & in all horizontal directions
and an mfnitely great permeability in vertical direction.

Figure 3. — When the vertical losses of energy are neglected, the potential ¢ is a
constant in a vertical. Mathematically ¢ is a function of x and y only, and not of the
vertical codrdinate z. The same is true for the piezometric head &, which differs from
@ only by a factor y. Hence the water rises to the same level in two piezometers
‘placed in the same vertical at different depths. This is shown for a phreatic, a confined
and a partly confined aquifer respectively. In phreatic water the piezometric level
corresponds to the water table. In a confined aquifer it rises above the top of the
aquifer. The same holds good for a partly confined aquifer, where the piezometric
level is generally different from the water level in the top layer.

Figure 4. ~ The left-hand side shows an aquifer bounded by a river or a lake, It
follows from the above that the polential ¢ is equal at all points to the right of A,
regardless of whether these points are chosen in the lake or in the aquifer underneath.
In all models, therefore, canals, lakes or the sea will be assumed to be in contact with
the aquifer along a vertical plane down to the impermeable bottom, as indicated on

19




Fig. 5
Fig. 4

the right-hand side of the figure. The mathematical expression for the boundary con-
dition is a given value of ¢ in the vertical plane passing through A,

Figure 5. - Similar considerations can be applied to wells. On the left-hand side a
partially penetrating well is shown. Since losses of head inside the wells wili be neglect-
ed in all studies, mathematically the well face is a boundary of the aquifer, charac-
terized by a constant value of ¢. But since vertical losses of energy in the aquifer are
neglected as well, the cylindrical part of the aquifer below the bottom of the well has
the same characteristic, Therefore, only completely penetrating wells will be considered,
as shown on the right-hand side of the figure.

If ¢ is independent of z, it follows that the same is true for de/dx and defdy, hence
for v, and v,. In other words, the water flows at the same rate at all levels. Summation
of the discharge over the height of the aquifer is then easy. The symbol g will be used
to denote the quantities flowing per unit width over the entire thickness of the aquifer.
The notations g,, 4, and g, apply to the discharges in the direction of the x and y
axes, or in an arbitrary direction s. It follows from the law of linear resistance that

do. . _ 4

g kD PR 4, kD 3y
which formulas will be taken as a starting point in the following chapters. The
product kD is called the transmissivity of the aquifer for horizontal groundwater
flow. -
The symbol O will be used to denote the rate of flow through an arbitrary cross-
section. In case of radial flow for example, it denotes the flow through a cylinder with
radius r and a height equal to the thickness of the aquifer. The quantity @ is then
related to g by the elementary relationship @ = 2rrg, hence :

Q = - 2nikD P9
dx
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It should be noted chat neglecting the losses of energy due to the vertical components
of the velocity does not imply that these components would not exist in the schemes
to be examined. Water supplied by infiltrating rain, and reaching the top of the
aquifer, is distributed over at least a part of the thickness of the aquifer by vertical
velocity components. Or, to give another example, the interface between fresh and
salt groundwater may, in case of nonsteady flow, move upwards or downwards, and-
these displacements can even be calculated when the vertical energy losses are
neglected.

In the case of a partly confined aquifer, the flow through the top layer of low permea-
bility has to be considered. The physical quantities of this layer will be indicated with
primes to distinguish them from the corresponding quantities of the aquifer. It will
be assumed that the thickness D" of the waterbody in the top layer is less than the
thickness D of the aquifer; moreover, that the permeability k' is low compared with
the permeability k of the aquifer, though not zero. It follows then that the horizontal
flow through the top layer can be neglected in comparison with that through the
aquifer, because it depends on the product £'D’, which is small compared with the
product kD. .

This assumption can be considered either as an approximation when the top layer is
composed of isotropic material, or as an ¢xact formulation when it consists of
anisotropic material with a permeabdility £ in the vertical direction and zero permea-
bility in all horizontal directions. Consequently, if a tanal, a lake, or the sea borders
the top Iayer, it will be assumed that no lateral exchange of water takes place, although
the potential of groundwater and free water on either side of the boundary might be
different. :

Fig. &

e

Figure 6. — Since no horizontal flow is considered here, the rate of vertical flow-per
unit area, ¥, is equal at all points of a vertical. It follows from the law of lincar
resistance that the gradient do’/@z 15 a constant, which means that ¢’ varies as a linear
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function of the depth. lts value at B, the lowest point of the top layer, is equal to ¢
at 4, which is the potential of the aquifer. This is because the potential depends on
2, ¥ and z where p and g are continuous functions of z at the boundary between top
layer and aquifer. For ¢'g may thus be written ¢. As to @', € being the point im-
mediately below the water table, it will be written simply as ¢’; it is related to the
height & of the water table by

l='}rh!

Thus the gradient on the vertical is (¢" — ¢)/D’, and the flow ¥ (positive in a down-
ward direction) is given by

k!
N=—(¢ -9
D

Since the water table is not level, the height of the water column varies. As a general
assumption, however, these differences will be neglected, taking for the variable height
the average, constant value 0. In the expression for ¥, D" occurs in the combination
k'tD', called the transmissivity of the top layer for vertical flow, in analogy with the
product kD, the transmissivity of the aquifer for horizontal flow.

1.2 THE LAW OF CONTINUITY

In addition 1o the law of linear resistance a second relation governs the flow of ground-
water: the law of continuity. It relates the quantities of the horizontal flow in the
aguifer to the quantities flowing in from above. The volume of water received per unit
time and per unit horizontal area will be called N. This quantity was introduced in
the previous section in the case of partly confined aquifers, where it had a physical
meaning. Tn the case of phreatic aquifers it is a purely mathematical concept, useful
in that it enables the law of continuity to be written in a uniform way in all cases. In
a general problem, N is the sum of two terms.

The first term, », denotes the net deep percolation of rain or irrigation water. Part of
the rain or irrigation water is lost by evaporation from the surface; a further quantity
is taken up by the roots of plants; in dry seils a certain quantity is retained by the
soils to make up for the moisture deficit; the rest percolates, and joins the water of the
aquifer. The latter quantity, expressed as a volume per unit time per unit area, will be
called #, the recharge of the aquifer. . _

The second term, — pudep/dt, is related to the movement of the free water table in the
case of nonsteady flow. Whean the water table moves downwards or upwards, water is
released from, or taken into storage respectively. If over an area S the level falls by
4h, a volume of water 4V = mSAk is released, m being the effective pore space of
the soil, It will be assumed that the values of m for upward and downward movement
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are equal, and that the yield is instantaneous. This is the classical, simple assumption.
The difficult problem of the relationship between water level variation and yield will
not be studied here. Instead of relating AV to 44, it is more convenient to relate it o
4, according to 4V = uSAe, where u = m/y, with the dimension [m~1/2¢2]. - Thus
a quantity — (@ ¢} exists, and should be added to #, representing the volume of
water released per unit time per unit area.
Hence

N=n-—-p ?—(‘E

ot

where N indicates the volume of water joining the horizontal flow per unit time per
unit area, due to both infiltration and movement of the water table. A third term
might be added to the formula in problems of nonsteady flow, accounting for the
quantities of water released or stored, because of the elasticity of ground and water.,
The influence of the elasticity, however, will not be studied, as will be explained in
Chapter 5.

The expression for N will be examined in the three cases of confined, phreatic and
partly confined aquifers. :

- Confined aquifer. — The impermeable cover of the aquifer allows neither recharge
from infiltration, nor the formation of a free water table. Therefore both terms in the
expression for & are zero, and

N=0

- Phreatic aquifer. - Both terms in the expression for ¥ may exist. Thus in the most
general case, that of nonsteady flow,

o
N=n—pu_—_
ot
If the flow is steady 2p/d¢ = 0, and

N=n

- Partly confined aquifer. — The same formula

N=n—-p <

t

applies, where y’ is now defined by AV = u'Sd¢p’ and ¢ is the potential of a water
particle just below the water table. Since both the water received from infiltration and
that released by the falling water table flow down through the top layer before
reaching the aquifer, the following condition applies -
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k!‘
N=_{¢ —
> {¢" — @)

In combination
a il
N=n-u . (fp -9
at

This formula, in its general form, applies to nonsteady flow. Irl problems of steady
flow d¢'ftt = 0, and thus
kl
N=n=2 (=9
> (p

Once the quantity A is defined, the law of continuity can be formulated in a uniform

way for confined, partly confined and phreatlc aquifers. Three cases will be examined:
- Parallel flow

— =N
ax

which equation expresses that N corresponds to the increase of ¢ per unit length.
- Radial flow

%

ar

= 2nrN

| This equation expresses that the increase of Q between two cylinders with radii »
| and r -+ dr corresponds to the water received at the rate N on the area 2nrdr
| “between the two cylinders.

- In a general flow pattern the law of continuity reads
9ax 04y _
'9x  dy

| Figure 7 represents an elementary prism in horizontal projection. Thequantity of
| flow entering through the left side is g.dy, that leaving through the right-hand side
' 0g. . . 04, : :
g« + e dx)dy. The difference is . dxdy. The difference in flow through the
X .

J .
other two sides is %dxdy. The sum of these differences equals the flow Ndxdy
i ]

received on the square.
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y - Fig. 7

ki

Tox ax

dx.

1.3 DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS

A flow system depends on two basic laws: that of linear resistance and that of con-
tinuity. Mathematically, these laws appear as partial or ordinary differential equations,
relating ¢, ¢, and ¢, to x and y in the case of steady flow, and to x, y and { in the
case of nonsteady flow. With steady flow their solution requires boundary conditions;
with nonsteady flow boundary and initial conditions. Physically, the differentiat
equations are the formulation of general laws governing large classes of flow systems,
while the boundary or initial conditions define each flow system separately. This will
be explained first for an elementary system, and then for more general examples.

1.3.1 Elementary example
Figure § corresponds to parallel flow with constant # in an aquifer with constant .
It shows a variety of boundary conditions. At A and E the aquifer is bounded by
impermeable sides, imposing the condition ¢ = 0. In the canals B and C the water
levels are given, determining the values of ¢ and @.. From canal D water is extracted
at a constant rate g,. With these conditions the flow system is defined in each of the
sections AB, BC, CD, and DE, as will now be shown.

) n
Y b SN e NN
— \y
<

Fig. 8 ' T
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In each section the law of linear resistance reads !

do
(1) =+ kD~ .
1= dx |
and the law of continuity
dq
2 —=—n
@ dx

The positive direction for x and g, as indicated in Figure 8, are arbitrarily chosen; the
plus and minus signs in the differential equations are determined accordingly from
the following considerations, looking at the section DE,
- In Equation (1) ¢ is positive, whilst ¢ increases with increasing x (dp/dx positive).
- In Equation (2) the recharge » (positive number) results in increasing g with
decreasing x {dg/dx negative). _
From (1) and (2) ¢ can be eliminated by differentiating (1), and substituting the ob-
tained value of dgfdx in (2). :
2

@ fe._n

dx kD
This equation gives in differential form ¢ .as a function of x, just as (2) gives g as a
function of x, also in differential form. Each of these equations is independent of any
boundary condition. Thus they express general flow propeities of any steady parallel
flow system with constant recharge » i an aquifer with constant D. They apply as
such to any of the sections AB, BC, CD and DE. The difference between the formulas
of these sections is brought about solely by the different boundary conditions.
Twice integrating equation (3) yields successively

de n
4 — = - —x+¢
o kD !
and
n x*
5 ¢=—Eﬁ?+c,x+c2

where ¢, and ¢, are integration constants. The last equation gives @ as a function of
x. A similar expression for ¢ can be derived from (4) and {1):

{6) g= —nx + ¢, kD

Since the differential Equation (3) is of the second order, there are two integration
constants, ¢, and ¢,, to be determined, Accordmgly two boundary conditions are
required. If the condition is of the form
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for x = x,, P =@,
substitution in {5) gives
@) go.=—%'%+cxl+c2,
if of the form

for x = x,, g =4,
substitution in (6) gives
(3 g, = — nx, + ¢, kD
Thus in section AB, ¢, and ¢, are determined by one equation of the form (7) and
one of the form (8); in section BC by two equations of the form (7). Sections CD and
DE are linked together. The formulas of either section should be written separately,
They contain the integration constants ¢, and ¢, for CD; ¢, and ¢4 for DE. These
quantities are determined by four conditions, written schematically
InC: o=,
In D the values of ¢ at either side of the canal are equal.
In D: the difference between the values of ¢ at both sides of the canal is equal to g,.
IhE: ¢g=0

1.3.2 General eguations

[n a general problem the flow pattern depends on the following differential equations:
— the law of linear resistance

dp e
3] =— kD~ — kb~
( 7x e g, 2
- the law of continuity
@ M. _y
ox  dy

where
N = 0 in the case of a confined aquifer,

" N=n-p i(g in the case of a phreatic aquifer,

a
69" _ k' . - ' .
N=n-y = = E( — ) in the case of a partly confined aquifer,
These cqua(ions apply to steady as well as 10 nensteady fiow. They relate ¢, g, and
¢, to x and y (and to ¢ in the case of nonsteady flow).
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From the equations (1) and (2} ¢, and g, can be eliminated, so as to obtain a differ-
ential equation in ¢ only
2 2

(3) S do__ N

o Gyt kD
Integration gives ¢ as a function of x and y (and ¢). Once ¢ is known, the quantities
of . and g, are determined by Equation (1). _
In principle the reverse procedure can also be applied: eliminating ¢ between (1) and
(2), so as to obtain differential equations in g, and g,. This operation, however, is
only elegant if N is independent of ¢ (and &¢/dr), for instance in the case of steady
flow in 2 confined or phreatic aquifer. The result is '
dg, _2q |

X o= ¥

dy  ox

to be combined with

)

@ . %4 % _ N

ax  dy
Integration of these equations gives g, and g, as functions of x and ¥ (and ). Determi-
nation of ¢ requires further integration of Equation ().
As previously stated, these differential equations are the formulation of general
laws governing whole classes of flow systems. For example the formula

o o _ kO

ax*  av: kD ot
which is a special case of Equation (3}, applies to any nonsteady groundwater move-
ment in an aquifer with constant D, receiving no recharge N. The systern may be
parallel, radial or two-dimensional; the variations of ¢ with time may be periodical,
steadily rising, etc. The individual systems are deiermined by further conditions
(boundary conditions, initial conditions), to be examined next.

{.3.3 Boundary and initial conditions _
Boundary conditions of two-dimensional flow patterns show so much variety that it
would be difficult to give a general rule as to their nature or their number. The
examples will be limited 1o steady flow, with # given as a function of x and y, (ex-
cluding, in particular, flow in partly confined aquifers with ¢’ given; these systems will
be analyzed in Chapter 4). _
Figure 9a. - If @ is given at each point of a closed boundary A, the flow system inside
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Fig. ¢

a

the boundary is determined for # given as a function of x and y. The system outside
the beundary, however, is not defined: a second condition is required, e.g. ¢ = @, at
infinite distance in all directions. To avoid difficulties arising from recharge of an
infinite aquifer, it is assumed in this example that # = 0 outside the boundary A.
Figure 9b. — The system inside A is also defined if in the field one or more closed
boundaries B exist, where ¢ is given at each point. These boundaries may also be
impermeable, in which case the condition reads that in any point the flow component
perpendicular to the boundary is zero.

If the boundaries B reduce (o the circumferences of wells, it should be noted that ¢ is
equal a1 all points of the well face, so that a single value @, the potential of the well,
suffices to determine the problem. Since moreover the dimensions of the weli are small
compared with those of the aquifer, the flow immediately around the well is radial,
with equal values g, of g on all radit, and a total discharge @, == 2nryg,, where r, is the
radius of the well. Thus the problem can be defined equally well by giving @, instead
of @,.

A particular instance of the above arrangement is a single well, pumped at a rate Oy,
sited in the centre of a circle with ¢ = @,, while n = 0. The problem would not change
essentially if the radius of the boundary circle increased infinitely. However, for ¢,
remaining constant, the ¢ values at finite distance from the well would become
infinitely low. If instead of (), the potential of the well had been given, the flow rate
would reduce to zero, This result will be re-examined in Section 2.3.1.

Figure 9¢. - If a well is sited at some distance from an infinitely long, straight canal,
the flow system in the half-plane containing the well is determined for:

-n=10

In the canal ¢ = @,

At infinite distance from the well in any direction ¢ = ¢,

In the well ¢ = p,, or 0 = O,

For nonsteady flow the same boundary conditions apply; however, neither the values
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of ¢ or ¢ at the boundaries, nor the recharge n need be constant: they may vary with
time. Theoretically these data suffice to determine the groundwater movement if they
are given from a remote past onwards, theoretically from an infinitely remote past.
This is feasible if, for instance, they are given as constants or as periodic functions of
time. If some of these quantities, however, vary in a more arbitrary way, it is con-
venient to resume at a time f = 0 the influence of all previous changes in boundary
conditions and recharge by describing the flow paitern at that moment, giving ¢
(or g) as a function of x and y (initial condition), From that moment onwards ¢ or ¢
at the boundaries, as well as the recharge a1, must be given as functions of time. -

A distinction should be made between confined and phreatic aquifers {disregarding
partly confined aquifers, which will be discussed in Chapter ' 5). Confined aquifers
receive no discharge because of their impermeable cover; they are under the sole
influence of the boundary conditions. The reaction is immediate, since the change in
flow pattern is only a change in pressure, while the propagation of pressure waves is
-infinitely rapid under the assumed conditions of mcompressible water and soil,
without inertia, Thus a nonsteady movement in a confined aquifer is a succession of
steady state flow patterns, each of them corresponding te the boundary conditions of
the moment. Clearly no initial condition is needed to define the movement.

The mechanism is different in a phreatic aquifer, where the water table constantly
tends to adapt its form to the steady state form corresponding to the boundary
conditions and # values of the moment. Any deformation of the water table, however, -
requires time, because volumes of water must be displaced. Hence the system is
engaged in a continuous process of adaptation to the ever-changing conditions im-
posed upon it, and always lagging behind. Should these conditions remain constant
from a certain moment onwards, the system would gradually approach the corre-
sponding steady state, reaching it theoretically after an infinitely long time,
Two-fluid systems are comparable with single systems as regards boundary and initial
conditions, the only difference being that all conditions must be doubled: a complete
set is required for each fluid layer. When, for instance, fresh water is extracted from a
well, the double boundary condition reads: (1) extraction @, from the fresh water
layer, (2} zero extraction from the salt water. Along the coast the conditions read:
(1) the salt water potential corresponds to sea level, (2) the fresh water section reduces
to zero. As to the mitial conditions in a phreatic aquifer, the values of ¢ (fresh water
potential) as well as @” (salt water potential) must be given as functions of x and y, or
what is mathematically equivalent to this, the form of both the water surface and the
interface.

In confined aquifers, which by definition are without recharge, two-flid systems ¢an
only develop when the fresh water body is supplied laterally from adjacent zones.
Although the propagation of pressure waves is instantaneous, the system will not
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immediately assume the steady state corresponding to the instantaneous boundary
conditions, as the deformation of the interface requires time.

In a phreatic two-fluid system both the water surface and the interface undergoa
change in form during a nensteady period. The movement of the interface is particu-
larly slow. The time of adaptation to steady boundary conditions is therefore much
longer for a two-fluid system than for a one-fluid system filling the same aquifer. It may
be of the order of tens of years or even longer. Groundwater in aquifers of coastal
regions is seldom n a steady state when any technical intervention has taken place in
the last decades.

1.3.4 Methods of integration
So far, the flow problems have only been discussed in principle; the practical question
as to whether or not the integration can be executed has not been examined. Actually,
the number of solutions found up to now have been strongly limited by the difficulty
of the mathematical operations involved. Apart from formal integration, other
methods of solution have been developed. The main methods now in use are:
A general soluiion of the differential equations {in terms of complex numbers) can
only be given for stcady flow without recharge. Each particular solution depends on
an arbitrarily chosen function. Once the function is chosen, the -boundary conditions
for a given circumference can be determined, but the converse is not true: from given
boundary conditions the function cannot be determined. The theory concerning this
point is developed in Section 2.4,
A certain number of sclutions have been found by direct integration of differential
equations. They apply for the greater part to steady parallel or radial flow, where ¢
and ¢ depend on one single codrdinate, Examples are given in several chapters.
Only in a few cases have nonsteady systems been described by analytic functions,
generally for parallel or radial flow. Most solutions have been found accidentally as
particular solutions of the partial differential equations. A general method for inte-
gration does not exist. Some of these solutions are to be found in Chapter 5.
In Chapter 7 iteration methods will be described enabling the calculation of steady or
nonsteady flow systems inside a closed boundary of arbitrary form, along which ¢ is
given numerically. (If ¢ is given the method lacks elegance), The quantity 1 is given in
arbitrary distribution over the aquifer. Tteration methods may be executed with
computers. Computer technics, however, will not be treated. The theory given in
Chapter 7 has been restricted to providing the reader with a basic knowledge, which
will enable him to carry out simple studies by himself, or to discuss more complicated
problems with a computer engineer.
In some cases graphical methods can be used. These, however, are more commonly
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applied in relation to flow through dams and similar problems, where vertical flow
components are involved. They will not be discussed.

Finally, model tests may be chosen to solve the problems: scala models, filled with a
liquid flowing through a porous medium or analogue models, e.g. containing a
viscous fluid between two parallel plates a short distance from one another, or models
based on the mathematical analogy between electrical fields and potential flow patterns.
None of these model technics witl be discussed.

1.3.5 Dimensions

In physical formulas each symbol stands for the product of a number and a unit.
The equation expresses the equality of the members from a qualitative as well as a
quantitative viewpoint. This double condition implies that

— both members have the same dimension,

- In any sum occurring in the equation, the terms have the same dimension,

- the arguments of analytical functions are pure numbers,

For example, in one of the problems of nonsteady flow the relation between the
potential ¢, the place x and the time ¢ is given by

—ax

=9+ @ge " sin{wf — ax)

The dimensions of the constants 2 and w are such that the products ax and wr are
dimensionless. Thus the arguments of both the exponential and the sine function are
pure numbers. The constants ¢, and ¢4 have the dimensions of the potential ¢.
When differentiating with respect to x, the left-hand member changes from ¢ into
dpjox; hencé its dimension is divided by a length. The right-hand member is first
differentiated with respect to ax, a number, which operation does not change its
dimension, and then multiplied by d{ax){dx or a, which multiplies the dimension by
the dimension of 4. Since x is a number, a has the inverse dimension of a length, and
by multiplication with a the qualitative equality with the left hand member is re-
established. Differentiation with respect to 7 gives rise to similar considerations.
Hydraulic problems depend on the dimensions of length, mass and time. Accordingly
a fAlow system is defined by at least three physical quantities of different dimensions,
depending on length, mass and time. For instance the problem of steady flow around
a well in an infinite, partly confined aquifer with constant ¢’(=0), depends on the
- transmissivity kD of the aquifer for horizontal fiow, the transmissivity £/’ of the top
layer for vertical flow, and the extraction rate @, from the well. This number of three
quantities is a minimum; the scheme may depend on more parameters, for instance
when there are more wells at different distances and pumped at different rates, or
when ¢’ varies from one area to another.
The number of variables happens to be at least three as well: in the simplest systems,
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those of steady, parallel flow, ¢ and g depend on x. But this number may also be
greater: in -a more general system, @, ¢, g, and g, may be functions of x, y and 1,
which ribngs the number of variables up to seven.

In problems which cail for a difficult mathematical treatment, it may be convenient
to simplify the formulas in the following way. Three characteristic constants defining
the problem are chosen as a base. They should have different dimensions and depend
on length, mass and time. They are used to form dimensionless groups with each of
the variables and each of the constant quantities defining the problem. In the scheme
of the well sited in a partly confined aquifer with kD, k'/D" and (, as basic quantities,
the three variables @, Q and r appear in the following dimensionless groups

W, 0 D S
" o N |

The differential equations read (for ¢’ = 0):
Law of linear resistance:

Q = 2nkDr ﬁ’o
dr

Law of continuity:

dQ K

while the boundary conditions are:
for r = rq (radius of the well}, @ = Q,
which may be replaced by '
forr=10, @ = Q,,
andforr = o,p = 0

When writing qoinsteadofg—) @, Q instead of.g, and r instead of r \/krm', the dif-
o 0 kD

ferential equations become

do
=2nr _*
¢ dr
dQ
= = 2rr
dr ¢

and the conditions
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forr=0,0=1

forr=0,p=0 .
The problem is then formulated in relations free from physical constants and can be
solved in its most general form.

As can be seen from the example, only two of the basic constants (kD and &£'/D’)
appear in the differential equations, whereas the third constant, ,, occurs in the
conditions enly. This difference plays a role in the theory on solutions in terms of
complex numbers (Sections 2.4.1). These solutions apply to steady, two-dimensional
flow in an aquifer with constant D, receiving no recharge. The differential equations
are

g= -2 4-_wk
Codx dy

Ox il

The general solution of the equation can be formulated in terms of complex numbers.
It involves all particular solutions, each determined by its own boundary conditions,
i.e. by at least three physical-constants, of which only one, kD, occurs in the differ-
ential equations. Thus, dimensionless groups with the variables o, ¢,, ¢,, x and y can
be formed for each scheme separately, but since they differ from scheme to scheme,
they cannot be used when formulating the general solution of the differential equations,
or establishing its general properties. .
Yet it is customary to delete k0 in the general theory, reasoning that in each particular
scheme two other physical constants can be added to 4D to form dimensionless groups.
Under this assumption the general solution may be written

@+ i =Fx+iy)
~ where ¥ is a variable, to be defined in Section 2.4.1, and F is an arbitrary analytical
function. It is understood that x and y, as well as @ and , are dimensionless groups,
to be formed in each system separately in dependance of the constants defining the
problem.
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2. STEADY FLOW, CONSTANT D, GIVEN

In this chapter three types of aquifers physically different, but mathematically
identical, will be examined.

I. A phreatic aquifer with constant thickness D (as an approximation). - The laws of
linear resistance and continuity read respectively:

W g=-k¥ g -
dx . ay

@ %.%_y
ax oy

Since for steady flow d¢/dt = 0, the general formula N = n — p (d¢/dr) reduces to
N=n

2. A partly confined aquifer. — The differential equations are the same. The expression
for N reads for steady flow:

kKo,
N=n I (9" — @)
The method of solution varies according to the way the problem is defined.
- If#is given as a function of x and y, the first two members of the above expression,
in combination with the differential equations, define the problem in exactly the same
way as in the case of a phreatic aquifer. The method of solution is identical, and gives
¢ as a function of x and y. Once ¢ is known, ¢” can be determined, -also as a function
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of x and y, from the last two members of the equation. If, for instance, the distribution
of n over the aquifer is uniform, the value of ¢’ — ¢ is constant. In geometrical
representation: the o' surface is at a2 constant height above the ¢ surface.

- If ¢’ is given as a function of x and y, or as a constant, the problem assumes another
character. The two differential equations are then to be combined with

k!
N=-—(p —
Y (@' — )

and ¢ must be determined as a function of x and y by means of a different integration.
Once ¢ is known, » can be found as a function of x and y from

K,
H = - —
3 (@~ o)
Problems of this kind will be examined in Chapters 4 and 7.
3. A confined aquifer, - The recharge » is zero because of the impermeable cover.
The differential equations are the same as those of a phreatic aguifer, while

N=n=0
2.1 SUPERPOSITION

2.1.1 The principle
In the following chapters the principle of superposition will be frequently used.
Since its application varies according to the nature of the aquifer, its precise formula-
tion will be given in each chapter separately. In the present chapter the problem will
be limited to steady flow in aquifers with constant thickness D, where n is a given
function of x and y. The principle will be shown in an example.

L Fig. 10

Figuie 10. — To give the example a general character, boundaries of different nature
are assumed: an impermeable rock wall 7, two rivers R and a lake L (a lake rather
than ithe sea, to avoid the complications of salt water intrusion). From this aquifer
walter 15 extracted by means of a number of wells.
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This description defines what will be called a model, this term taken in the sense
of any material arrangement, either in nature or in the laboratory. On the given
model several flow systems can be imposed, defined by the following hydraulic
data:

~ The recharge n as a function of x and y.

— The water levels in-the rivers and the lake, determining ¢ along the borders.

— A given supply of water along the rocky outcrop i, as a function of the length codr-
dinate along this boundary.

- The rates of extraction from the wells

An arbitrarily chosen set of these values’ deﬁnes a flow system, which means mathe-
matically that at each point {x, ») the values of ¢ and g (¢, and ¢,) are determined.
The principle of superposition can be formulated as follows: If in a certain model two
different flow systems, I and 11, can be realised, it is also possible to realise a third
system, III, in which the values of ¢, g and » at each point are the sum of the corre-
sponding values in Systems [ and 15, For ¢ and » this is the algebraic sum, for g the
vectorial sum.

This summation applies to all points of the aquifer, in particular to the values of ¢
and g at the boundaries. As to the borders of the rivers and the lake, the superposition
is valid for the values of ¢ as well as for the quantities of flow exchanged at cach point
between these waters and the aquifer, As to the wells, the well faces constitute bounda-
ries of the aquifer.' The superposition applies both to the values of ¢ in the weils, and
to the rates of extraction.

This principle enables two or more elementary systems to be superposed, and con-
versely permits any given system to be separated into two or more elementary flow
patterns. In the latter case the choice of the elementary systems is arbitrary, depending
on the use to be made of the separation: it might, for instance, be different when the
separation is needed for a calculation or for a demonstration.

Although superposition. is one of the leading principles in calculation practice, its use
is limited. Tn the following it will be applied to schemes where# is given, and sometimes
to partly confined aquifers where ' is given. Yet other problems exist wherein phreatic
or partly confined aquifers the water level is near the surface, so that evaporation
depends on the elevation of the water table, and thus » is related to ¢ or o', These
cases occur frequently in irrigation and drainage problems. Although the principle of
superposition remains valid, it is no longer feasible to distinguish elementary systems
depending on given quantities only.

| The demonstration starts from the mathematical condition that if in the given
| model System 1 can be realised, the quantities o4, {g.)r, {g,)r and n, satisfy the
| differential equations and the boundary conditions. The same is true for System II.
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_ As regards the quantities

Prr=¢1+ ¢y

@1 = (@ + @D

(@)1 =1(@)r +(q)1s

Mppp = R+ Rys
they represent again a flow system, System III, if they aiso satisfy the differential
equations and the boundary conditions. For the boundary conditions this is true
by definition of the problem; for the differential equations the proof is given by ,
‘summation of the (linear) equations, as follows:
The law of linear resistance (e.g. for the x direction) reads System [:

i
- kDL
4 ox
System 11:
i
g = - D ﬂ
8x

After summation, using the premiss.that £ is the same in both systems:

a
dir = — kD Pur
‘ ax
The law of continuity reads
System I:
g Har _
ox ay
System 11:
5(6’:‘)” + A =y
ox ay

After summation

Ha i T G
dx ay

= A

2.1.2 Water resources

In regional studies on the possibilities of groundwater extraction, the fundamental
question to be answered is the maximum rate at which groundwater can be withdrawn
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Fig. 11

from an aquifer or a certain geographical area. The phrase groundwater resources is
used, butthe term is misleading since it is also used for mineral or oil resources. Where-
as in the latter case the quantities to be extracted are limited by the quantities present
in the ground, in the case of groundwater the guantities present are replenished by
recharge from rainfall or irrigation, as well as by lateral infiltration from adjacent
water courses. The expression safe yield is also used, but the term has not always been
defined in the same way.

In view of the mainly didactic character of the present study, no exhaustive discussion
of the problem will be attempted, and the definition of the terms in question will be
left open. The aim is rather to analyse the problem on its main points, so as to provide
the basis for a complete study. The analysis varies according to the character of the
aquifer. Therefore the question of water resources will be taken up again in each
chapter. The best insight can be gained from this section, the corresponding parts in
the following chapters having more or less the character of additional remarks, with
the exception of Chapter 6, where the intrusion of saline water comes to the fore as a
factor strongly limiting the yield of the aquifer (see Section 6.1.2).

Figure 11. - The model of the previous section will be used as a basis for the analysis:
first with one well, then with several wells. Two systems, T and 11, will be considered,
whose sum is System [II; '
System 1 is defined by:

— The true values of @ in the rivers and the lake,

= The true n values, :

— The true supply along the rocky border.

- No extraction from the well.

System I by:

- ¢ = 0in the rivers and the {ake.

“n=0"

- No supply along the rocky border.

- The true extraction @y from the well,
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- Tt follows that System IIL is defined by:

- The true ¢ values in the rivers and the lake.

— The true » values.

— The true supply along the rocky border.

~ The true extraction ¢, from the well.

Physically these systems may be interpreted as follows:

System I is the natural state before water was extracted from the well.

System I[ is the change in state brought about by the extraction,

System 111 is the final state of the aquifer under exploitation.

From this analysis several important conclusions can be drawn with respect to the
exploitation of the wells. First the system with one well will be examined. The draw-
down in the well, by definition the difference between the levels before and during
exploitation, is equal to the ¢ value of System I1. Since the basic laws of groundwater
flow are linear, the drawdown is p'roportionai to the rate of extraction. Hence the
specific capacity of a well can be defined as the yield per unit drawdown, or ifs reverse,
the specific drawdown, as the drawdown per unit rate.

The specific capacity of a well is determined by System IT only, It depends on:
(1) the form and the nature of the boundaries of the aquifer, and the position of the
well with respect to them, (2) the transmissivity £ D of the aquifer, and (3) the diameter
of the well. It is independent of: (1) the levels of the lake and the rivers, (2) the re-
charge n, and (3) the supply along the rocky border. Thus it is independent of the
original flow pattern, as defined by System L. Finally it is clear that under the condi-
tions of the present chapter the well has no radius of influence: its influence extends to
the boundaries of the aquifer.

If several wells are exploited in the same aquifer, they interact. Several elementary
sysiems, Ila, 1Ib, Ilc, etc. may then be distinguished, each taking one well into account.
The interaction corresponds mathematically to the superposition of these systems.
The calculation is a straightforward one when the extraction rates of the wells are
given; an iteration procedure must be used in the reverse case, when the extraction
rates are to be determined at such values as to create given drawdowns in the wells.
Methods of calculation, however, will not be discussed here; only the hydrauhcaspects
of the problems will be analyzed:

System 1 shows that the quantity of water extracted from the wells is counterbalanced
by a change of the flow passing through the boundaries with the lake and the rivers.
Under natural conditions these water courses receive the full recharge of the aquifer.
When water is extracted from the wells, the water courses receive only a part of this
recharge, and if the extraction exceeds the recharge, they supply the excess. The
quantity extracted from the wells appears for the full amount in the water balance of
the waler courses.
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If the surrounding water courses can supply unlimited quantities of water, the
maximum extraction from a given set of wells (given site and diameter) depends
finally on the maximum drawdown in the wells to be admitted. This maximum
drawdown is determined by:

— Formal considerations. — According to the premisses of this chapter, the water level
in the well should not fall below the basis of the top layer in the case of confined or
partly confined aquifers, while in the case of a phreatic aquifer the drawdown should
be small compared with D,

— Technical considerations. — The characteristics of certain pumps to be used may
limit the water lift. The drawdown should also be limited, so as to leave sufficient
water height in the aquifer for screens of adequate length. '

- Economic considerations. — The water lift may be restricted by a maximum allow-
able pumping cost per unit water volume. This cost should always be compared with
the cost of conveying the water through canals or pipelines from the surrounding
water courses to the site of the well. Co _ '

If the number and the site of the wells can be chosen freely to obtain the maximum
yield from the aquifer, the problem loses interest. By sinking a sufficient number of
wells along, and close enough to the bordering water courses, the vield can be in-
creased at will. The exploitation no longer bears the character of extraction from the
aquifer, but of indirect extraction from the water courses.

If the bordering water courses are exploited, or if their contribution is limited by
natural factors, their water balance should be considered. As long as no water is
extracted from the aguifer, the water courses receive the full recharge of the aquifer, If
their water balance allows for a reduction of this flow by AQ at a maximum, the
extraction from the aquifer is limited to that rate. If their exploitation does not admit
any reduction of the inflow, no water can be extracted from the aquifer at all. The
problem is comparable to that of extraction from the upper course of a river, when the
full discharge or a part of it is wsed downstream. No waler can be extracted without
considering the interests downstream. )

Finally, the waler in the bordering waler courses may be of inferior quality, and unfit
for use. The classical example is sea water, but the discussion of this case will be post-
poned o Chapter 6, as the difference in density between the fluids modifies the flow
pattern conmderably Stightly saline. water or water containing other undesirable
constituents will be assumed.

The problem depends too much on details, to be treated in a systematic way: the
chemical composition of the water along the boundary may net be uniform, or extrac-
tion of impure water may be tolerated to some extent when the water used is mixed
with good quality water from the aquifer. Tn any particutar problem the study should
be made on System 111, which gives the actual Alow lines, and in particufar the actual
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fow vector at any point of the boundary, indicating the inflow of impure water into
the aquifer. From this system the quantity of impure water extracted by any of the
wells can be determined, as well as the period of time that elapses before this water
reaches the well. This time period may be tens of years.

For didactic reasons the discussions have been placed on a strongly schematised basis.
To bring the problem nearer to engmeenng practice some additional factors will be
introduced.

1. It has been assumed that the recharge in Systems I and II is the same. But if the
waler extracted is used for irrigation in the region itself, a part of it will return to the
aquifer as seepage. The quantity 4n of this supplementary recharge, as well as its
distribution over the area, can be estimated. To account for this supply an additional
flow system can be superposed on the others characterized by:

An as the only recharge

- ¢ = 0 in the bordering canals

- no supply at the rocky border

— no extraction from the wells.

Since the return flow from irrigated fields is saline, the qualitative aspects may need
study. If any investigation on this point is required, it can be based on the sum of the
elementary flow systems. This flow pattern indicates along what paths and at what
speed the introduced salt is carried through the aquifer.

2. Systems I and T both represent steady flow. The water levels of System T¥l are
lower than those of System | when the aquifer is phreatic or partly confined. As long
as the water table was falling, water was released which has not been accounted for in
the above dicussion. 1t is gained but once, and may be of small interest compared with
the quantities extracted in a series of years, but it does constitute a yield of the aquifer.
3. Tt was assumed in all problems that the recharge n is given, which implies that the
water table is so deep under the surface that-evaporation of groundwater is negligible
(more than 2 or 3 m deep in moderate climates). If, however, in the initial state the
water table is near the surface over the whole area or a part of it, evaporation does
play a role, and » becomes a function of the water depth. Moreover, lowering of the
water table generally causes a change in the natural vegetation, which in the case of
land reclamation will even be replaced by crops. Finally, on irrigated lands, water is
supplied according to the need, which in turn depends on depth to water table,
evaporation and crops.

This complex problem is no longer governed by simple hydraulic laws. Tt will not be
dealt with here; only some marked differences will be listed, whlch may form as many
starting points for detailed studies.

- It is virtually still possible to distinguish two systerms, T and 1T, whose sum is 111, |
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~ being the original, and I11 the final state, but the quantities »,, #,; and »,,, are no

longer given.

— The influence of a well no longer extends to the boundaries at all sides, as is dis-
cussed for a particular case in Section 2.3.2. '

~ The drawdown in a well is no longer proportional to the discharge rate, as can be
seen from the formulas of the same section, )

- The interference of the wells no longer corresponds to the superposition of elemen-

tary systems.
- The yield of the wells is no longer counterbalanced by diminution of the outflow

towards the bordering canals only; reduction of evaporation appears as a further
term in the water balance of the aquifer.

2.2 PARALLEL FLOW
In this section the principle of superposition will be applied to some of the simplest
schemes,

2.2.1 Two canals
Figure 12 represents parallel flow in an aquifer bounded by two long, parallel canals.
Three flow systems will be studied in this model, indicated by I, Il and 111 respectively,
System 111 being the sum of T and II. The differential equations and their general
solution have been given in Section 1.3.1 (Equation (5) defining ¢ and Equation (6)
defining ¢). Thus the formulas can be apptied directly to the present systems. The
results are given below. The ¢ diagrams are shown in the bottom part of the figure.
System [ is charactenized by
— Potentials ¢, and ¢, of the canals A and B respectively,
- No recharge (# == 0).
The formulas are:

X
P =@ — -I—(rpl — @3}

q,=—-kD—l_‘p2

@, is @ linear fungtion of x, corresponding 10 a straight line in the figure; ¢, is a
constant (independent of x).

System Il (s defined by

— Zero potentials in both canals.

- Uniform recharge #.
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Fig. 12
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¢ is a second degree function of x, corresponding in the figure to a parabola, sym-
metrical about the middle section of the figure. The value of ¢ in the middle section is
nl®

Pm ="
" 8kD




g is a linear function of x, zero in the middle section. The quantities flowing into the

canals are equal and opposite.
System 1LI, being the sum of Systems I and II, is defined by .
- Potentials ¢, and ¢, of the canals.

— Recharge »n.

The formulas of this system can be written forthwith as the sum of the above mention-
ed. : '

X n
= -— _— e x{l - x
G = @y I(401 ;) %D ( )

(-

As a corollary it may be rémarked that for 7 = 0 the formuias reduce to those of
System I; for @, = @, = 0, to those of System II. . :

4 = — kD E—: 2

The characteristics of System IIT vary with the sign of ¢;,, for x = 0, as shown in the
figure.

~ System Hla: g, is positive {flow to the left). The water level reaches a top on the
left-hand side of the figure.

— System ITIb: ¢,;; = 0. The discharge into the canal on the lefi-hand side reduces to
zero; the flow in the aquifer is towards the right throughout.

— System Tllc: g4, is negative (flow to the right). The canal on the left feeds the
aquifer.

In the three cases the superposition is shown by the shaded parts of the figure, whose
ordinates are equal to those of System TT.

2.2.2 Three canals
Figure 13 shows a model with three parallel and equidistant canals. The flow scheme
is defined by:
- Uniform recharge #.
- Potcntla]s ¢, and ¢, in the outer canals,
- Extraction 4o ver unit length from the middle canal.
It has been indicated in Section 1.3.1 how ¢ and ¢ can be determined as functions
of x. However, the solution can be established more readily by using the principle of
superposition. The present system, 1o be called IIT, will therefore be considered as the
sum of two others, T and I1. The systems are characterized as follows (the respective
@ lines being indicated in the bottom part of the figure),
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System 1

- Recharge n.

- Potentials in the outer canals ¢, and ¢,.

- No extraction from the middle canal. )

This is the system examined in the previous section. The formulas can be repeated

+—.x.!‘—x
P = (qvl ©2) %D (! =%
q,=—kDu+n——x
{ 2
System 11:

— No recharge.

- Potentials in the outer canais zero.

- Extraction from the middle canal ¢,.

The formulas {valid for the left part of the symmetrical model) need no furlher
explanation after the foregoing.

doXx
Py = ——
" 2kD
q
g1y = — =

The formulas of System 1II can be found by summation:

%“

fﬂ!u=(f’l_J—;(ml_‘;f’z)'i"é-k—p’f(f‘x) ZRD

2z

In the figure the ordinales of the shaded parts are equal, The figure shows an example
of the general proposition formulated in Section 2.1.2: The drawdown in the canal
for a given exiraction raie ¢, is independent of the original flow (of System 1),
Figure 14. — An interesting conclusion can be drawn when the superpositidn is Te-
peated for #» = 0. In each of the systems, ¢ is then a constant in both halves of the
aquifer. The problem is: 1f in System I the flow rate in absolute value is ¢,, what rate
go may be extracted from the middle canal, so that no water flows into the aquifer
from the canal on the right? The answer is

do = 24,
as can be deduced from the figure,

q”;=—kD£1_.;_¢z+n(§_x) _@
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Fig. 14 _ Fig. 15

2.3 FLOW AROUND WELLS

2.3.1 Infinite aquifer
Figure 15. - The model is defined by a well, sited in an aquifer with constant D,
extending infinitely in all directions. On this model a flow system is imposed, which is
characterised by:
- Constant extraction @, from the well,
- No recharge of the aquifer.
These characteristics do not fully define the flow system, but they allow the following
formula for ¢ to be established:

2rnkD  r,

where r, and r, are two arbitrary distances from the centre of the well, and ¢, and ¢,
the corresponding potentials.
| The laws of linear resistance and continuity read respectively

|

| () Q= 2nkDr 7¢
| dr

| (2) @ = Qo = constant

| (@ positive towards the well, r positive in opposite direction). Eliminating Q and
| integrating: : '

| )
|

l

|

Qo . In f
2rkD ¢

where ¢ is an integration constant.
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Substituting successively
forr=r, ¢ = @,
forr=r, P = 3

and subhstracting

|
|
l
|
|
|

It follows from this formula that if the system is defined by a given potential at infinite
distance from the well, the drawdown in the well is infinitely great. If, conversely, the
potential in the well is given, the potential at infinite distance is infinitely high. As a
conclusion, under the given conditions the problem of a well in an infinite aquifer
does not correspond to any reality, although a mathematical solution exists.

Yet the formula derived has a certain value. If the flow systern is of a nature other than
described here, it may approximately satisfy the conditions of the present section for
small values of r. Examples will be given for a partly confined aquifer with given ¢
in Section 4.3.3 and for nonsteady flow in Section 5.5. In these cases the formula in
question applies to the vicinity of the well. It may therefore, under certain well to be -
checked conditions, be used for the interpretaton of pumping test data obtained from
observation wells sited near the pumped well.

2.3.2 Radius of influence

Tn extensive flat country under natural conditions, the groundwater table shows no
gradient of any importance. Hence the groundwater balance in not too small an area,
say a square kilometre, is mainly determined by the recharge of the aquifer and the
evaporation from thé groundwater table, while the lateral groundwater movement is
negligible, .
In aclimate with average or ample rainfall the water table cannot stay permanently at
great depth, where evaporation from the water table is negligible (depths of more than
say 3 m), because in some periods of the year at least, recharge from rain would occur,
which in the absence of evaporation or lateral flow, would cause the water table to
rise. Nor can it stay permanently at the surface of the soil, because in other periods
of the year evaporation would lower it. Thus, in the course of the year the water table
fluctuates in the upper 2 or 3 m of the soil. Similar conditions may exist in irrigated or
drained lands.

Figure 16. - If water is extracted from a phreatic or partly confined aquifer, the level
in the well being lowered to more than; say, 3 m below the surface, three zones can be
distinguished :
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Zone A, where evaporation from the groundwater table is negligible, while a recharge
n is received from percolation through the root zone, )

Zone B, where the groundwater table is lowered under the influence of the well, but
to less than 2 or 3 m below the ground surface, Evaporation is less than under natural
conditions, so that the aquifer does receive recharge, but ata rate lower than ».
Zone C, where the groundwater level is practically no longer influenced by the well, as
the recharge of the zones A and B corresponds to the extraction rate of the well,

An exact calculation of the nonsteady flow during the year, taking into account the
relationship between evaporation and water level in Zone B, would be complicated.
A first rough estimate may be made based on the following steady-state flow scheme,
where Zone B is taken partly with A, partly with C. In this model two zones are
distinguished: )

Zone A’, around the well, characterized by recharge », assumed evenly distributed over
the area, and constant during the year. The radius R of this zone is the radius of
influence of the well, .
Zone C’, characterized by a constant water level, representing the average during the
vear under natural conditions. If the aquifer is phreatic, ¢ = ¢, and if partly confined
¢ = @' = @,. Inthe latter case ¢ and ¢’ are equal in Zone €’ they differ in Zone 4°,
but only ¢ affects the calculation.

The model is defined by a well, sited in an aquifer with constant D. The water flows
towards the well within a circle with radius R (ihe radius of influence). The flow
system is defined by '
— Uniform recharge n.

— Extraction , from the well.

—Forr=R, Q=0 N

-Forr=R, ¢=¢,

Clearly the quantity {0, extracted from the well corresponds to the recharge over the
surface area of the cone of depressicn :
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Qu = TERZH

Since Q, is given, this equation defines R
The formulas are

Qo [ Qo '
= - n——-— -1
PENTED T dmko ( 7 )

Q=0 —nrin

At the well face, for r = ro, with slight approximation
Qo Qo
Py =@, — In -1
¢ ' 4zkD nren

where the term within the brackets may often be neglected.
The simplest way to find the sclution is by superposing two elementary systcms,
I and II, defined as follows:
System I:
— No recharge.
— Extraction @, from the well.
~Forr=R, ¢=29,
The solution has been given in Section 2.3.1:

QO lﬂﬁ
2ekD r

=@ —

|

|

|

|

l

l

|

|

|

|

| Q=10

| System IT:

| - Recharge n.

| - No extraction from the well.

| -Forr=R, ¢=0

| For this system the laws of linear resistance and continuity read respectively,
' .
|
l
I
|
||

deg

¥

(1Y Q= kD2nr —

@ = Q = — Inrn '

Equation (2) can better be written directly in integrated form:

| Q= —nrin
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It expresses that the water flowing through the cylinder with radius r equals the
recharge received on the enclosed surface area.
Eliminating ¢

: n
dp = —m rdr
Integrating -
P = — n_rz +c
4kD

where ¢ is the integration constant, to be determined from the condition
forr=R, ¢=0
Thus

) n 2 2
@=—. (R°—r
4kD( )

By superposition

Qo R n 2 2
= —_ In — + —{(R"—r
b= k" T )
Qir = Qo — wrin
From the expression for ¢y;,, R can further be eliminated, using
Qo= R
which gives the formula indicated earlier.

2.3.3 Well near a canal

(The problem dealt with in this section is re-examined more comprehensively in
Section 2.4.3, where the theory of complex numbers is applied).

As was shown in Section 2.3.1, a single well in an infinite aquifer does not correspond
to a state of steady flow, since infinite potentials are involved, either in the well itself
or at a great distance from it. However, a well discharging at a constant rate near a
canal where a constant potential is maintained, brings about a steady flow system
with finite potentials throughout the aquifer,

Figure 17. — The model consists of an aquifer with constant D, divided by an infinitely
long straight canal into two halves, in one of which a well P is sited. The flow system
is defined by

— Extraction Q¢ lrom the well

- Potential ¢, of the canal
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— Potential ¢, at infinite distance from the well in all directions (so that the aquifer
would be at rest if the well were not exploited)

— No recharge (n = 0).

The system can best be studied by replacing the canal with an imaginary well P’, sited
symmetrically to well P about the axis of the canal, and into which the same quantity
O, 1s Injected as is extracted from well P. (Negative well: extraction — ). The stody
isonly concerned with the half aquifer containing the well P; the flow pattern of the
other half is fictitious. The solution is found by hsu‘perposition of the influences of the
two wells. )

The figure shows why the influence of the second well is equivalent to that of the canal.
All along the canal axis the velocity is perpendicular to it, as is shown for point D,
A zero velocity component along the canal corresponds to the condition of constant
potential in the canal.
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The potential at an arbitrary point § is

0o Fa
q) = Pt n—
¢ 2rkD v,
[n particular the potential in the well (radius rg) is
2a
=9~ o In —
2nkD

(if ro is neglected in comparison with 2a).
The fiow vector ¢ at § is the vectorial sum of ¢, and g,, whose magnitudes are
respectively,

0

Q0 ' Qo
I = vl qd=
ol 27r, ? 2nr,

In particular, the flow vector in B 1s

.|%|=29
Ta

As is implied in these results, the flow. pattern covers the whole aquifer to infinite
distance from the well.

These formulas are derived from superposition of the influences of the wells P and
P’ Only the determination of the integration constant requires comment. The
potential at any point S, resulting from the extraction from well P is

% [n 2t
2nkD ¢,

and from the replenishment to well P’

Py =

Qo in 2
kD o

where ¢, and ¢, are integration constants, Under the combined influence of the
two wells the potential is the sum:

¢=— D 2y
. 2nkD
where @ = @, + @, and ¢ = (Qof2akD) In (cyf¢;). Along the axis of the canal
ry = ry, hence In (r2/r) =In 1 =0, and ¢ = ¢ = ¢,.. This shows that the com-
bination of the two wells defines along the axis of the canal the same condition

Py = =
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| @ = ¢. as was imposed by the canal itself. Moreover, at infinite distance from the
| well, where ,/r, tends to 1 as well, ¢ is also equal to o,.

Y0 =0
u. b
4
[ !

2h 2a —2h u-i-u--——b—a-{-—b 2q Zbo 20—
+ - + - | + | - + - +
& & & *—]—> f »———=8 - .-
H F o B o] A : C E G T

Fig 18

2.3.4 Well between two canals

Figure 18. - A well with a discharge @, is sited between two infinitely long parallel
canals, where ¢ = 0. The problem is the same as the previous one, with the addition
of 4 second canal, The method of solution is similar. The flow pattern can be found by
replacing the two canals by an infinite series of positive and negative wells {positive
for extraction; negative for replenishment), each having a capacity Q, and sited as
shown in the figure. This series of wells is characterized by

— geometrical symmetry about either of the canal axes,

— opposite signs to the left and right of either canal.

The series of wells is equivalent to the canals, since each pair of a positive and negative
well, sited symmeirically about any of the axes, gives a flow vector perpendicular to
that axis in any of its points. Hence the flow vector resulting from the infinite seties of
wells is also perpendicular to either of the axes. .
Only the ftow pattern in that part of the aquifer between the canals will be consider-
ed. The potential at any point is the sum of the influences of an infinite number of
wells, As was shown in the previous sections, it is not possible to determine the in-
fluence of each well separately, because of the infinite value of @, either in the well
itself, or at infinite distance, However, the influence of each pair of a positive and a
negative well is finite. Thus, the summation of the influences of the wells should be
done in pairs. The succession can be chosen in various ways. When taking, for in-
stance, in schematic notation

A+ B+ (C+D)+(E+F)+(G+ H)

it is clear that the terms within brackets diminish regularly in absolute value and
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eventually vanish, while their signs alternate. This is a mathematical criterion for the

convergence of the series.

Similarly, the flow vector in any point is the vectorial sum of an infinite series of

vector terms, each term resulting from a pair of wells. The convergence can be proven

in the same way by considering the vertical and the horizental components separately,

Figure 19. - As an example the potential @ at the well face can be calculated when

the well is sited midway between the canals (6 = a = //2). When summing in the

given succession :
(A+B)+(C+ D) +(E+ F)+ (G + H)

the result is found to be

= _QL ln &
2akDp 2

Using the formulas of the previous section the result can be written

Q= 2 ]n@+1n§+]n2—l+]n£
2nkD [ ! 31 3

|

]

|

|

: Qo 702244668 _ 0 (m7
| kD 11335577 2nkD (tz)
|

|

using a well-known expression for nf2 in the form of an infinite product (Wallis’s
formula},

2.3.5 Well between a canal and an impermeabie boundary

Figure 20. - The next problem differs from the previous one in that the canal on the
right is replaced by an impermeable boundary. A well P with a discharge @, is sited
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between an infinitely long straight canal 4, (¢ — 0), and an impermeable boundary B,
parallel to the canal.

The flow pattern can be determined when the canal and the impermeable boundary
together are replaced by a series of wells, characterized by

- geometric symmetry about both the axes 4 and B,

- difference in sign at either side of the canal axis A; identical signs relative to the
line of the impermeable boundary 8.

The last condition results from the consideration that each pair of wells, symmetrical
to the axis B, both in position and in sign, causes a flow vector along that axis at any
of its points D, as shown in the figure. Thus the flow vector defined by the infinite
serics of wells is also directed along that axis, which is the condition for an imper-
meable boundary.

Because of the perfect symmetry about the axis 8, the flow pattern in the zone between
the axes B and A can also be described as one half of the symmetrical low system
determined by two wells P and P’ {both extracting at a rate (J,}, sited in a zone bound-
ed by two canals A and C (¢ = 0 in both). This arrangement is indicated in the lower
part of the figure.

In particular, if in the upper part of the figure the well P is sited against the imper-
meable wall, (b = 0, @ = [}, this means that in the lower part of the figure the wells P
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and P’ coincide, so as to form one well extracting at a rate 2Q;. According to the
previous sectibn the potential in this well is
L

= ——.In
o= D

2.3.6 Well near a canal in uniform flow

(See also Section 2.4.4, where the same problem is examined in more detail, using the
theory of complex numbers). '

Figure 21. - The model is defined by an aquifer with constant D, bounded on the lefi
by an infinitely long straight canal, and extending infinitely to the right. A well is
sited at distance @ from the canal, As to the flow system, if no water were extracted
from the well, the aquifer would flow at a uniform rate ¢, at right angles to the canal,
where ¢ = 0. The aquifer receives no recharge. The problem is to determine the flow
pattern when water is extracted from the well at a rate @, after steady-state conditions
have been reached.

—— 9 Fig. 2

—_—

The definition of the flow system raises difficulties. Since the aquifer extends to in-
finity on the right, the potential would rise to infinite heights. In the case of a con-
fined or partly confined aquifer, the top layer would be uplifted by the pressure of the
water; in the case of a phreatic aquifer the thickness of the water body would become
infinitely great, and D would no longer be approximately constant,

There are two ways to handle the problem. The first is to assume a sloping base of the
aguifer. This model will be studied in the next section. The second is to consider only
a strip of an aquifer bounded on the right by a second canal (¢ = 0), parallel to the
first, at a distance /, great compared with « (as will be shown the condition is

I . , . . . .
E)) a). A umform recharge is assumed, whose influence in the narrow strip,
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Fig. 22
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however, is negligible. This scheme will be examined next. At first sight the assump-
tions made may seem complicated; they have been deliberately chosen as a prepara-
tion for the study of related problems, dealt with in following chapters (Sections 3.4
and 6.2.6).

Figure 22. - The flow system, ITI, described above, will be considered as the sum of
two elementary systems, | and 11, defined by

System I:

- Recharge ».

— No extraction from the well,

- ¢ = 0 in both canals.
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System 11:

-n=0

Extraction J, from the well.

¢ = 0 in both canals.

It foliows that System IIT is defined by:

Recharge n.

Extraction {, from the well,

- ¢ = (in both canals.

System I was studied in Section 2.2.1, where the foillowing formulas were established

n !
=__ x{l —x); = - .
2kD ( ) 1 n(2 x)

In the following, only a narrow strip near the canal on the left will be considered,
- ! S oo :
determined by x « 5 Since the well is in this strip, also a 3 Under this as-

sumption the above formulas reduce to

ni qdo i
p=_—_x=_"x;, g=i_=
2kD~ kD ;%
which are the formulas of uniform flow ¢, towards the canal, without supply ».
Figure 23. — System II has been studied in Section 2.3.4. (Well between two canals).

Fig. 23
P
L]
I |
2a_ 28 20 2b 2a

f [
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R R p»I P : 5 g
P

The two canals can be replaced by an infinite series of wells, as indicated in the figure.
IT only a narcow strip near the left-hand canal is considered, the wells P and #
suffice, the influence of the other wells being negligible. This reduces the problem to
that of Section 2.3.3 (Well near a canal).
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'| The distance 25 is great compared with 24, Moreover, the wells R and R’, near to
| each another and with opposite sign, almost counterbalance each other. Thé same
| applies to the wells § and §'.

From these considerations the potential ¢ as well as the vector ¢ can be determined at
each point in the strip for both Systems I and II, and by summation for System II1.
Reference is made to Section 2.4,.4 where the results are given.

2.3.7 Sloping base
Figure 24. — In this section, by way of exception, an aquifer will be examined, resting

on a base that dips slightly along the x axis. The aquifer receives no recharge. If D .

is exactly or approximately constant, the fundamental hydraulic laws are the same as
in the case of a horizontal base:
— The law of linear resistance:

4} qx=—kD€2; qJ,:—kD?E

dx dy

—~ The law of continuity:

(2) @_"+Eq—’==0
dx - dv

In a horizontal aquifer, ¢ is bound to certain limits. If the aquifer is confined or partly -

confined, ¢ should not fall below a certain value in order to keep the aquifer full of
water, not rise above another value, to avoid uplifting of the top layer by too high a
pressure. If the aquiler is phreatic, the limits are much narrower: to keep D approxi-
mately constant, its deviations from the average value should be negligible.

The same conditions apply to a sloping aquifer, where they limit the deviations of
@, not from a constant value o, but from a variable quantity ¢, + yox. In other

—_——— - x : Fig. 24
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words, while flow systems with a horizontal base are described as deviations from a
state of rest, those with a sloping base are described as deviations from a system
defined by

¢ = @y + yox
g =—kDyu = gq
‘fy=0

Since the differential equations are the same in both cases, many hydraulic phenomena
are the same. For instance, extraction at a constant rate [rom a well in a herizontal
aquifer, starting from a state of rest, would never lead to steady flow. In the same way,
in the case of a sloping base, starting from a state, defined by

© = po -+ YUX, G =¢o, ¢, =0

extraction from a well at a constant rate ¢, would not lead to steady flow either.
If, however, the aquifer were limited by a horizontal, straight, infinitely long canal
along the y axis, where ¢ = @,, constant extraction from a well, sited on either the
upstream of the downstream side of the canal, would result in a steady flow system.
The formulas would be the same as in the previous section, This is the other way of
representing physically the system of a well near a canal in uniform flow.

2.3.8 Approximation for series of wells

In this section an approximative method will be given for calculating the influence of
series of wells. Such an approximation may be used as a first approach to a problem,
to be checked afterwards by precise calculations. It may also be considered as a final
evaluation if the transmissivity or the recharge are not well known, or if any other
unknown factor reduces the value of the exact solution.. Lack of precise data is
frequent in groundwater engineering.

Figure 25. - The drainage of a phreatic or partly confined aquifer with constant D
may be effectuated by a grid of wells extending in all directions to infinity. The wells
are sited in parallel scries at interdistance a; the spacing of the wells within the series
is b, where b is assumed considerably smaller than a.

The flow systern is defined by a uniform recharge #, and an extraction &, from each
well. Steady flow requires that

0Oy = nab

A series of wells shows a certain analogy with a canal, in that in both cases the poten-
tial is lowered along a line, which is the axis of either the well series or the canal.
. Therefore, first the well series will be replaced by canals, from which a quantity go is
extracted per unit length, so that
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A - A Fig. 25

= ag=]

N "

The highest potential exists in the symmetry axis CC; the lowest in the canal. The
difference Ag,, according to Section 2.2.1, is

Actually the extraction takes place locally from the wells, instead of uniformly from
the canal. The first consequence is that the potential in the line CC is not constant,
Deviations from the average value, however, will be neglected, since a is assumed
much greater than & Thus the potential in the line CC is considered as a constant ¢,.
The second consequence is that ¢, in the well is lower than the hypothetical potential
in the canal. The losses of energy are concentrated in the vicinity of the well, where the

flow is radial. For radial flow, the loss of potential between a radius r and the radius

of the well ry can be calculated according to Section 2.3.1. In absolute value
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The approximation is that d¢, and Ag, are added for finding the dtﬂerencc in po-
tential ¢, — ¢, between the line CC and the face of the well :

nat Qo r
O, — =—=-+ In
Po=%kD " 2akD | rg

taking for r such a value that the circumference of a circle with radius 7 is equal to the
front through which the water flows towards the well from hoth sidés together:

Iar=2b
Using @y = nab the result may be written in the form

0. — 05 = A, + g, = na’ 4 nab b
¢ ' T 8kD  2zkD  nr,

In -2

Some justification of this choice can be found in the following consideration,
A, represents the loss of energy in parallel flow over a length '/,a; ¢, the loss in
radial flow over a length r = b/r, which is about '/,b. Thus the total flow length
assumed amounts to '/oa + '{3b. Actually ail streamlines have different lengths;
the shortest measures 1/,a; the longest !f,a + !/,b. Between these values f,a +
/b appears as a fair average. -

2.4 SOLUTIONS IN TERMS OF COMPLEX NUMBERS

This section deals with some of the most important applications of the classical
theory of complex numbers to groundwater flow. At the outset some general remarks
shouid be made. '

1. Due to its historical development, the theory of complex numbers is generally
presented in an unsatisfactory way, with square roots of negative numbers as a basic
element. A better theoretical development can he given, leading to the same resulis,
but on the one hand this would require a profound discussion of the fundamentals of
algebra, and on the other hand would lead to more general conclusions than potential
flow theory only. It therefore will not be given here; the theory will be presented in
its classical form. ,

2. In a treatise on vector algebra it is desirable to make a distinction in notation
between symbols representing numbers and vectors (here complex numbers). In this
publication the theory of complex numbers occupies only a small space. Thus the
choice of the symbols has been determined mainly by the requirements of the other
chapters, and no difference in notation between numbers and vectors could be made
. without complicating the orthography of the whole.
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3. If ¢ + #f is an analytic function of x - iy, the relation can be represented graphi-
cally. If, as will be done.in this section, lines of equal ¢ and ¥ are drawn in a graph
where x and y are plotted on the axes, the reasoning can be based on either the function

o+ Yi=Fx+i)
or the inversion function
x+ iy = Glp -+ i)

The second representation is preferable, The first, however, will be chosen for tradi-
tional reasons and also because the function F appears anyhow, and alternative use of
the functions F and G might create confusion.

4. The formulas will be written in dimensionless form, For an explanation of this
point reference is made to Section 1.3.5.

- 2.4.1 Fundamentals )

The following theory is valid for n = 0 (and constant D), Under these assumptions the
differential equations read:

- The law of linear resistance

dp g
= — kD 2X; = — kb 2%
4 Ax 1 ay

- The law of continuity
d0qx  0q

dx dy :

To simplify the formulas; it is customary in this theory to write ¢ instead of kDep.
Thus, if the result of a calculation reads ¢ = ¢, this should be read kD¢ = ¢ or

¢ = cf/kD. In other words, the values of ¢ obtained as results must be divided by kD,
The equations then reduce to .

d é
ay ,

(2) ?&‘+%=0

These equations are satisfied by solutions of the following form
B =0+ =FD=Fax+i)

@) g*=gq,—ig=—F(z)=—4dF
dz




where F is an arbitrary analytical function of z. Equation (3) contains a variable i,
which does not occur in the differential equations (1} and (2). Its physical meaning
will be explained below. The solution, as defined by (3) and {4}, satisfies in effect a
second set of differential equations, similar to (1) and (2), but with ¥ instead of p as a
variable. For physical reasons, however, Eguations (3) and (4) will only be considered
in relation to (1) and (2). From the same viewpoint a second solution, where in (3)  is
replaced by —  is ignored. Although mathematically the solution is independent of
the first, it does not yield new physical results.

The quantity ¢* (= ¢, — ig,) must be introduced, since it cannot be written as an
analytic function of ¢ (= g, -+ ig,). In particular, no complex number ¢ can be found
such that g* = agq. Graphically ¢* is the vector symmetrical to ¢ with respect to the
real axis.

| Proof that Equations (3) and (4) satisfy (1) and (2):
| Differentiating (3) with respect to x, and multiplying by —1

ox dx .
Differentiating (3) with respect to y, and multiplying by 7:

L

6) — il + i - F
ay @y ,
Equation {4) reads
@) + g, —ig,= — F'
Since the right-hand members of (5), (6) and (4} are equal, the left-hand members
are equal for their real and imaginary parts separately. Hence

| which corresponds to (1).

Differentiating (4) with respect to x:

Q) a"'*—fa_qr= —F

ax
Differentiating (4) with respect to y, and multiplying by i:
(8) ié& L9 _ F
dy  dy
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|
I
|
I
|

Adding (7) and (8), and equating the real paris:

%x %4y _
dx  dy

which corresponds to (2).

The given solution defines ¢ and ¢ for each point of the field. Thus lines of equal ¢
and equal § can be drawn. It is customary to space them by equal intervals dp = 4.
It can then be shown that the elementary quadrilaterals enclosed by these lines are
squares, Since the lines of equal i are in all points perpendicular to the equal potemlal
lines, they are stream lines. The water flows in the direction of decreasing .

I
|
|
|
I
I
|
|
|
I
I
|
|
|
|
I
|
|
I
I
I
I
|
|
|

The area around a point z, can be represented by z, + Az, where Az is a variable
vector. Using this notation, the functional relationship can be written as a series
(Theorem of Taylor)

¢ =F(z)+F (z) 4z + F" (z.)(‘”}

For a small area around z,, the first terms suffice:
¢ = Flz)) + F'(z))4z |

Writing F(z,) = ¢,and9p — ¢, = 4¢
Ap = Fiz)dz.

In the series all coefficients F(z\), F'(z)), F*(z,) are complex numbers. Writing n
the last expression £'(z,) as a complex number ¢

Adpr= eAdz
or

Liag + iay) =
c

Displacement along an equipotential line {de = 0) overan interval Ay corresponds

o

Az, = Liayg
[

Displacement along a line of constant Y4y = 0) over an interval 4o corresponds
[£s]

66




A2y = E.d(p
¢

are perpendicular to each other.

Fig. 26

Since A = Ag as a convention, the vectors Az, and 4z, have equal length and

Fig. 27

Figure 26, — At certain points F'(z,) may be zero. It follows from ¢* = — F'(z )that
at these points ¢*, and therefore the flow vector g, is zero. Such points are called
stagnation points. The flow net shows a particularity: the figure represents the flow-
lines; the equipotential lines, not shown, are perpendicular to them.

For a small area around such a peint the functional relationship reduces to

where ¢ is a complex number. This relationship, according to classical theory,

corresponds to the given figure.

|

i b= F(z)+ F( (Az)”
! =F(z)+F (2) 55
|'0r

| _F”(z) 2

| A
!or

| Ap = c(4z)?

|

I

Figure 27. - In the following sections yet another type of stagnation point will be
studied, where F'{(z,} = F"(z,) = 0. The flow pattern is indicated in the figure. The

straight lines intersect-at 60°.
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The proof is similar. The functional relationship for values near z, reduces to

Ap = c(42)®

where ¢ is a complex number,

2.4.2 Well in an infinite aguifer

In this and the following sections the problem will be defined by a given function
¢ = F{(z). The characteristics of the flow system are to be derived from this formula.
First the following function will be examined

(N ¢=¢t+ify=Fz)=Inz

. y 1
2 4q*=gq.—ig,=—F (Z)=—;

Figure 28. — These equations describe the flow around a well sited at the origin. With
z = re*, the formula for the potential can be written as

p = Inr
| Upon substitution of re'® for z, Equation (1) becomes
| g+ip=Inz=1Inr+i0
I
|

Equating the real parts
g=Inr

i Fig. 28

Since ¢ depends on r onl);, and not on &, the flow is radial. At the face of the well,
(r = ro}, ® = In ry, which is a finite value. For ¥ » w0, ¢ — co, In agreement with
Section 2.3.1.
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The flow vector can be written as

According to (2)

4 =g —ig,= - L= Lo
Z r
Thus
. 1
q=qx+rq,,=—;ew

The vector ¢ is directed along z, but in the opposite direction, which indicates
radial flow towards the origin. Tts absolute value | ¢ | = 1/r. Thus the quanllty
flowing through a cylinder with radius r is

0 =2n,

a constani, which confirms the basic assumption # = 0. The quantity extracted
from the well has the same value )

Qo=12n

2.4.3 Well near a canal
The function is

(1) ¢=F@=m@z-a-l@z+a=m>"2
: z+a

z—Q z4+a

D g'=-F@-- (—l - J_)

where @ (s a complex number,

Figure 29. - Ii can readily be seen thatif ¢ =1n z represents the flow towards a well
at the crigin, ¢ = In {z — a) represents the flow towards a well at the point mdlcaled
by the vector a.

-| The figure shows that the vector z — @ defines the position of a point § with
| respect to the well P in the same way as does the vector z with respect to a well at
| the origin.
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Figure 30. — Thus the formula

$¢=In{z—a)—In(z+ )

corresponds to the combination of iwo wells P and P, sited at + a and — q, respect-
ively, extracting and replenishing respectively, quantities 2n. This combination is
known from Section 2.3.3. It is equivalent to the combination of the well P and a
canal along the axis of symmetry between the two wells. If a real positive value is
chosen for 4, the well P is on the positive real axis and the canal a]ong the imaginary
axis.

Figure 31. — The formulas (1) and (2) imply the following proposmons

1. The canat is an equipotential line with ¢ = O,

2. At infinite distance from the well P in all directions, ¢ = 0 as well.

3. At an arbitrary point S of the aquifer the potential is

o =In(r,/r:)
4. At the face of the well r = ry)
¢ = In (ry/2a)
5. At an arbitrary point § of the aquifer.tﬁc flow vector is

g = — 2a g e
Fira

| g {=2afr,
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streamlineg

equipotential line

6. At the origin of the codrdinate system

| 1= 2/a

7. Streamlines and equipotential lines are circles.

I
I
I
I

Proof of these propositions. — The figure shows that

z—a=rle”‘
7+ a=rye®
Thus
z—4a ¥ ]
¢ =In =lnl+i(d, -8,
z+a ry

Equating this to ¢ + iy:
@ = In(r,fr;) (proposition 3),and y =8, — @,

Lines of constant ¢ (equipotential lines) are lines- of constant ryfry; lines of

canstant  (streamlines), are lines of constant 8, — 8,. According to well-known

geometric properties both are circles (Proposition 7).
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For any point of the canal, ¥, = r, and @ = In{r,/r,) = In 1 =0 (Proposition 1}.
For any point at infinite distance from both wells the ratio r/r, tends to 1 as well,
and ¢ tends to zero (Proposition 2).

At the face of the well r, = rp and r, = 2a, neglecting ry in comparison with 2a,
Thus ¢ = In (ro/2a) (Proposition 4),

The vector g* is defined by

gt = — 1 a 1 - 2a o
(z—a z-I-a) (z—a)z+a)

|

1

|

|

|

1

|

|

i

| Substituting

I z—a=rdMandzta=rd® -
I g* = _Eﬂ_e—f(n,+ 82)
| nr,
| or

|

|

|

i

|

F

l

|

|

|

|

— 2a o (0182

Fira
This formula gives the absolute value of the vector
| G’l = 2ajr.r,

as well as its direction: an angle 8, + @, with the negative real axis (Proposition 5}
At the origin of the axes, r, = r, = a, hence )

W

"} (Proposition 6).

The results obtained must be transformed, taking into account some of the premisses
made at the outset. An exampie will be given for ihe formilas of ¢ and ¢ at an
- arbitrary point (Propositions 3 and 6)

¢ =In(ry/rz)
g = _E_ei(s.w;]
' L _

Firstly it should be remembered that ¢ stands for kD, thus the first formula reads

) 1 1“| ) .
¢ =—In— b
kD r,
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Secondly the extraction rate from the wells, in absolute value, was 2n. For an arbitrary
extraction Q instead of 2z alf values of ¢ and ¢ must be multiplied by @,/2=, thus

Qo q 7
2nkD rz

q=- aQy ALY

b1 )

The expression for ¢ corresponds with the result -of Section 2.3.3. .

Finally this example can be used to show the formation of dimensionless plots in a
scheme on which the theory of complex numbers has been applied (see Section 1.3.5).
The scheme is defined by three constants, £, a and @,. Using these constants,
dimensionless plots can be formed with the variables ¢, ¢ (g, or 45} and r (ry or r3).

kD a r

E @ | a q; p
The variables used in the general theory were

kDo, g, r
since only kD oceurs in all problems of this kind; ¢ and Qg are proper to the present
system only. C

244 Well near a canal in a uniform flow
The functicn is

T -

a
+ o2
zZ+a

D ¢=F@=In

@ q*=—F'(z)=—( ! )—qo

z—a zz+a

The first term of these expressions corresponds to the flow system examined in the
previous section. Upon it the system

¢ = goz
has been superposed, which corresponds to
P = Gox; g=—4y

representing uniform flow at a rate g, towards the canal and perpendicular to it. -
Figure 32. — The problem corresponds to that of Section 2.3.6. The model is defined
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———
-—
P P
? -
Q=-2n Q=z2n
1
A e |
i I
—
1)
—

by a canal, running along the imaginary axis, and a well P on the positive real axis,
at a distance ¢ from the canal. The aquifer extends to infinity to the right. The fow '
system is defined by

— = 0 in the canal.

- Extraction from the well at a rate 2m.

— Uniform flow at a rate ¢, in the direction of the negative real axis, if no water were
extracted from the well.

As in the previous section the canal will be replaced by a negative well P', sited sym-
metrically to P with respect to the canal, and replenishing at a rate 2x. The physical
restrictions of this flow systém are the same as in Section 2.3.6. They are subject to the
considerations given there,

The values of @ and g are given by Eqs. (1) and (2),

)
@=In—+ ggx .

ra
2a
g=- o (Bt o) _ o
LS
In the well

.o
(00=l“53+qox

The derivation of these formulas does not require comment; the stagnation points,
however, need a close analysis. .
Figure 33. — Three cases can be distinguished.
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i Fig. 33

point A
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Fig. 33 {continued)

point B

A. go>> 2fa. A single stagnation point of the type 4¢ = c(dz)* exists at 4, at a
distance \/a (a — 2/qo) from the origin. The dotted line divides the aquifer into two
parts, one delivering into the well, the other into the canal. At a great distance to the
right the two branches of the dotted line are parallel at a distance 2n/g,, so that the
parallel flow g, over that breadth corresponds to the extraction rate 2x of the well.
B. g¢ = 2/a. A stagnation point of the type A¢ = ¢{4z2)3 exists at the origin of the codr-
dinate axes. The division of the aquifer into two parts is the sameas in the previous case,
as is the distance between the branches of the dotted line at great distance to the right.
C. go < 2/a. Two points of the type d¢ = ¢{d4z)* exist at B and C on thecanal border,
at distance \/ — a (@ — 2{q,) on either side of the origin. The dotted line divides the
aquifer into three parts, characterized respectively by flow into the well from the right,
into the well from the canal, and into the canal, The distance between the branches
of the dotted line at great distance to the right is smaller than 2n/g,, because the flow
between these branches constitutes only part of the supply into the well.
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The function

(I ¢=F(z)= In + oz
has the following derivatives:
2
F2)= 5 + 4
" 2 —4a
" daz
FJI Z = —
(z) {Zz _ az)z
. 3z + @t
F'(zy=4a —
(ZZ _ aZ))

The particularity F'(z) = 0 applies to the points z where
(2) 22 =a{a — 2/q0)

2
Case A. g — qr_ = 0. - There are two real values of z:
0

2= 4 Jala— 2g)
corresponding to two points on the real axis at equal distances at either side of the
canal. Since only that part of the aquifer to the right of the canal corresponds to the
physical model, only the positive value is considered. For this value of z, different
from zero, F'(z} # 0, thus the stagnation point is of the type d¢ = c(dz)?,
Case B. 4 — 2/9, = 0. ~ According to (2), z = 0, which locates the stagnation
point at the origin of the codrdinate axes. For z = 0, also F"(z) = 0, but not F’”’
(2). The point is therefore of the type 4¢ = c(42)%. '
CaseC.a — 2/g, < 0. — According to (2) 22 is negative, which corresponds to two
complementary, imaginary values of z:

z=+i J—alu — 2/qg,)
representing two stagnation points on the canal border.at equal d|stances from
the origin. Since z = 0, F'(z) # 0 and the points are of the type 4¢ = 1:'(Az)2
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3L STEADY FLOW, VARIABLE D, GIVEN»

3.1, ANALOGY WITH SYSTEMS WITH CONSTANT D

The assumptions made in the title are the same as those of the previous chapler,'

except that D is variable instead of constant, which limits the studies to phreatic
aquifers. To simplify the formulas, the level of reference R will in all problems be
chosen at the base of the aquifer. The thickness D of the water body is then equal to
the piezometric height &, which in turn is equal to @fy. With this convention the
formulas for ¢ and g from the previous chapter can be repeated when D¢ is replaced
by ¢2/2y. Flow nets formed by streamlines and equipotential lines remain vnchanged
if the equipotential lines are drawn at equal intervals of 2?2y instead of @D. In par-

ticular in Section 2.4 (solutions in terms of complex numbers), ¢, which stands for

k
kD, must be replaced by 2, standing for 5 ¢*. Thus the text of this chapter could

be an almost exact repetition of that of the previous one, and the formulas would show
a great resemblance. To avoid wninteresting repetition, only those problems which
require discussion will be taken up again,

| The flew system is determined by differential equations and boundary conditions.
| As to the latter, they are the same; in both cases they are expressed in terms of
| @ or g. But the differential equations are different.

| - The law of linear resistance (to be wiitten for the x direction only) reads for
| consiant D:
1

I

I

g.= - k0%

ox
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ox

X

For variable D, where D = A == gfy
= %%

y éx
or

o o2
Gx = — k
dx

Thus Dy has been replaced by /2y,
—~ The law of continuity in both cases reads,

%a. , o4,

éx  dy _
The meaning of this substitution can be illustrated by the following reasoning.
In the formulas the values of @? always appear as differences: p? — qaf, or (p? — cpf.
‘(This is due te the fact that in the differential cqua'lions i only appears in the form
of derivatives of 2. Upon integration expressions in ¢? are found, containing an
integration constant, which is eliminated by subsequent substraction of two
equations of the same form). The difference of two squares, for instance p? — ¢3
can be written (p; — ;) (¢, + ¢;), where ¢, + ¢, may be replaced by 2¢D, if
¢, and ¢, are near the average value of yD, as was the assumption of the previous
chapter, Thus @ — @3 corresponds to 2yD{(p, — ¢,), which means replacing
Dy, by @1{2y, and De, by 93/2y. :

= h ’

|
I
I
I
I
I
I
I
I
|
l
i
|
I
|I
|
I
I
I
!
I
I
I
I
|
|

3.2 SUPERPOSITION AND WATER RESQURCES

Figure 34. - The principle of superposition can be applied as in the previous section
by summing the values of ¢ and #, but the values of ¢? should be added instead of
those of ¢. The same model may serve for the proof. System I represents the natural
flow pattern, System I[ the change brought about by the extraction from a well, and
“System 11 the final fliow pattern after the flow is steady again. The same conclusions
can be drawn, subject however to the following remarks.

1. For the definition of the specific drawdown or the specific capacity of a well, the
relationship between 49? and O, should be taken as a basis, instead of that between

A¢ and Q. The conclusions then remain the same.
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2. In System IT all values of ¢? are negative; they do not correspond to real valoes of
¢. This system has no physical meaning, but is merely a term in the mathematical
operation of superposition. The negative values of ¢? indicate that the values of @2 of
System I must be reduced (o obtain those of System III. Interpreted this way, the
imaginary character of the system disappears. 1t should also be noted that if water had
been pumped into the well instead of being extracted from it, the values of ¢? in
System II would have been positive, and the difficulty would not have arisen. This
stresses the conclusion that the physical interpretation of this system is of minor
importance. '

3. At the border of the water courses in System IT the section of flow reduces to zero.
This particularity recurs in other problems of the same kind, and also in Chapter 6,
where in several schemes the thickness of the fresh water layver reduces to zero near
the coast, or near wells and galleries. If the system under consideration has no physical
meaning, but is a mere term in the process of superposition, only the mathematical
consequences need be examined; if it represents reality, the physical consequences
must be studied as well, '

- Mathematically speaking, if 5 is the codrdinate perpendicular to the boundary, it
follows from the law of linear resistance

do
= —FED_X
s 2

that for D —»'0, %—? — oo at all border points where g, ¢ 0. Thus ¢ as a function of s

shows a singularity at the boundary. But in any system, as in the present, where D is
proportional to @, (D = ¢g), the same law may be written:

' 2
ke _ _ e o)

9= s . 2 oy

80




indicating that ¢? as a function of s has no singularity at the boundary, It follows that
there are no restrictions on superposition in terms of ¢? at the boundary.

~ Physically speaking, secondary phenomena will play a role. If ¢ does not reduce to
-zero while the section reduces strongly, but not to zero, the velocities will be high, but
not infinite. The law of linear resistance then may no longer be valid. The zone near
the border should therefore be studied in detail from a physical viewpoint by methods
that will not be described here {calculation, graphical methods, model study, obser-
vation in nature).

From'such studies it may follow that

— The adapted scheme represents reality with sufficient precision for the use to be
made of it. (The high velocities are local, and the precision of groundwater calculations
is generally not high). '

— A correction should be applied to the data as resulting from the scheme.

= The scheme should be abandoned.

In the following, where -this particularity recurs, reference will be made to.these
remarks, while the analysis to be made will apply to the scheme in its simple form only.

3.3 PARALLEL FLOW
Figure 35, — As an example; the system of Section 2.2.2 (three canals) will be analysed

here. The problem is the same as in the previous chapter, the only difference being
that D is variable instead of constant. The model is defined by three parallel canals,

I . .
3 apart. The flow system is determined by

— potentials ¢, and ¢, in the outer canals.

— extraction ¢, per unit length from the middle canal

— uniform recharge . _

Following the same line of thought as in Sections 2.2.1 and 2.2.2,, the formulas can
be derived from the superposition of three systems. The formulas of the individual
systems can he copied, after transformation, from those of the previous chapter. The
bottom part of the figure shows the ¢ lines of the different systems.

System I is defined by :

— Potentials ¢, and ¢, in the outer canals,

- No extraction from the middle canal.

— No recharge.

For constant D the formulas were ' .-

X
@—cp1=-—£(@1—¢>z)

&i



System 111

— Zero potential in the outer canals.
— Extraction g, per unit length from the middle canal.
— No recharge.
For constant D the formulas were (left-hand part of the aquifer)

(a=—___gix

2&D
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q=_kD§01_q)2
!

Replacing Do by ¢2{2y;

X
ol — ol = ——E(qo? ~ o})
g=— i e
2y
System II

— Zero potential in the outer canals.

— No extraction from the middle canal.
— Uniform recharge ».

For constant £ the formulas were

i
. = . f—
i 2wx( x)

"

After substitution

2 ny
et= =
@ x(l—x)

q=n(zf_x)



g = — quf2
After substitution

2 ga¥

= —-"x
¢ k
q=—qo/2

" Thus, by superposing the three systems,

X iil
@2=<pf——f(¢i—¢§)+%x(!—x)—%?x

Go
2

In the @* diagrams the ordinates of the shaded parts are equal. The figure demonstrates
the remarks made about the characteristics of the function ¢? near the boundaries.
Although in Systems IT and TII dp/dx tends to infinity, this is not the case with
3(@*){dx: the ¢? lines have no vertical tangents at the boundaries.

-—k( H+n t—x
q 2]y¢l @2 3

3.4, FLOW AROUND WELLS
The flow system around a single well sited in an infinite aquifer and pumped at a rate
O, is subject to the same restrictions as in the case of constant D. In the preceding
chapter, Section 2.3.1, the formulas were

q= Qm"thr
For a finite value of ¢ in lhe well, the po!em:al at infinite distance rises to infinite

_height; for a finite value at great distance, the potential in the well drops to infinite
depth. .

If the well is sited at a dlstancc a from an 1nﬁn1tcly long, straight canal with potential
@, the method of replacing the canal by an imaginary negative well can be used
as in Section 2.4.3. The basic formulas can be copied, substituting ¢3/2y for ¢D.
Thus, at a point S
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g=— aQy & @) ang gl = aQo
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where r, and r, are the distances from the point § to the real and the image well
“respectively. The potential in the well (radius ry) is

2 2 Coy, 2a

=g, — —-in—

Po Te 7 ro

The flow net formed by the streamlines and equipotential lines is identical to that of -

Chapter 2, provided the equipotential lines are drawn at equal increments of ¢ and

not of ¢. _
The problem of a well between two paratlel canals, or between a canal and an
impermeable boundary, will not be dealt with, since it is not essentially different from
the corresponding probiem in Chapter 2.

The problem of a well near a canal in uniform flow can also be copied from Chapter 2
(Section 2.4.4), when Do is repiaced by ¢?{2y. The transformation does not present
any new element. The formulas will be given because they will be used in Chapter 6,
The potential atan arbitrary point S at distances . and r, from the real and the image
wells respectively, is given by

2 r
0% = (ﬂ + Y440 _322]“_1
k nk r,
or
nly  yQ, 1,
ot =i+ Ll x-on D
k k

if the zone along the canal is considered as part of’ a broader aquifer, bounded on the
other side, at distance /, by a second canal, as was assumed in Section 2,3.6. A model
with a sloping aquifer may not be used, since the principle of superposition would not.
apply to it {D being no longer proportlonal to ). The potential in the well (radius ry)
is given by

ﬂi‘}’ Q"_’ In %l_

= ° + —_—
qoo ‘;O k nk Fa
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Fig. 36

The flow vector, Anally, is defined as

2a o @re _ ”_3
r.rs 2

- as with constant D,

3.5 SLOPING BASE _
For an aquifer with a gently sloping bottom, the principle of superposition is not
valid. A complicated system cannot be considered as the sum of elementary systems;
it must be calculated as a whole, which makes the integration more difficult.
Figure 36. — The simplest problem is that of a flow of constant intensity g,, directed
along the lines of greatest slope. This problem has an infinity of solutions, defined
commonly by

(1) —ox=(r—yo} + D:1n(p/yo)

where D, = gofkay, and y, is a parameter, corresponding to the value of y for x = 0.
Three classes of solutions may be distinguished ;

1. The value y, = O gives the solution of Chapter 2 with constant D = D,. See line C
in the figure.

2. Positive values of p, correspond to solutions of type A. The thickness of the aquifer
increases in the direction of the flow, whilst the gradient decreases. At infinite distance
to the left D becomes infinitely great and the gradient zero.

3. Negative values of y, correspond to solutions of type B. The thickness of the aquifer
decreases in the direction of the flow, and the gradient increases. At P the thicknéss D
becomes zero, and the gradient infinitely great.
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Proof of formula (1).

(1) —ax=yp~yo+ D.1nyiyo
The basic formulas are

— The definition of the potential
(2} ¢ =ylox+ D, +p)

—~ The law of linear resisiance

(3) a= k@, + 92
ox

— The law of continuity

4) ¢=go

— The definition of D, in the simplest system with 2 = D, = constant

(5) go = kDay

Eliminating @, g and g, from the {our basic equations (2), (3), (4) and (5) resultsin

) (D, + y)ﬂ‘l’ +ay =0, or(i}_, =—a_ 7
dx dx D, +y }
This differential equation relates y to x. Since it is of the first order, it needs one
single condition for integration
forx=10, y=y,g
The proof that (1) is a solution of this differential equation {6) is given by differ-
entiation; the proof that the condition satisfies (1) is given by substitution.

Analysis of the solution
1. From (2} and (6):

dy  yaD. dh ab_
dx D.+y dx D.+y

2. Since the argument of the logarithm in (1) must be positive, y is positive for
positive values of y, and negative for negative values of y,. Thus the water table
lies as a whole either above or below. line C.
3. In both cases the water table approaches the line C on the extreme right,
from(D:fory -0, x—= 4 o '

dh
from (7): for y - 0, il
4. If y, is positive, y varies between 0 and oo. Zero value is approached at the ex-
treme right (x -+ + oc). According to (6); dy/dx is always negative, which means
that y increases steadily when x decreases (towards the left). According to (1),
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» — « corresponds to x = — oo, while (7} indicates that for y — <o, % - 0,
(horizontal water surface), )

5. If yo is negative, y is negative, but for physical reasons y varies only between O
and — D_. As was shown, y = 0 cotresponds to x — oo. According to (6), for y
negative between zero and — D, dyfdx is positive: y decreases steadily with
decreasing x, in other words | y | increases steadily towards the left.

The value of x cortesponding to y = — D, is determined by (1):

- D,
Yo

{point P in the figure). From the above it is clear that this value of x is negative.

This can also be derived from the above expression when writing the logarithm as
a series (not shown here).

—GUC=(— Dc_-y[])""Dcln

- d
According to (6), for y = — D, cd

o 4- oo, or, physically speaking, the water

. . - dh L
surface is vertical. Equation (7) indicates also that — — oo at this point.

dax
6. If yo = 0, equation (1) is satisfied by y = 0, but loses its structure. It is better to
return to the basic equations (2), (3), (4) and (5).

As in the previous chapter, the question arises: Can steady flow exist around a well,
extracting at a rate (Jy from an infinite aquifer in which groundwater flows at a
uniform rate g,, according to line €7 To answer this question no use can be made of .
the principle of superposition. The reply can, however, be given by comparison with
the scheme of a sloping aquifer with constant .D. When the losses of energy from
infinity to the well are infinitely great for constant D = D, they will be greater still
for variable D < D,. Hence no steady flow exists.
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4 STEADY FLOW, PARTLY CONFINED AQUIFER, GIVEN ¢’

In the problems of this chapter not #, but ¢’ is given. Thus in
k'
N = H = e -
o (¢ - @)

# and ¢ are the unknowns.

Physically, this condition may correspond to any of the i‘ollowmg instances:

- In inundated fields the free water surface corresponds to a constant value of '¢'.
- In areas with upward groundwater flow reaching the ground surface and resulting
in surface run off towards ditches or low places in the field, ¢’ is defined by the ground
level.

- In a drained region ditches or tiles narrowly spaced maintain the phreatrc water
table within certain limits. Neglecting the undulations, between the drains, as well as
the variations in time, an average, constant water table may be assumed.

- During a short period of nonsteady flow (e.g. a pumping test under certain condi-
tions) a changing water table may be considered as steady, The same approximation is
allowed for periodic fluctuations of ¢ with small amplitude. {See Section 5.2.2., for
instance, where the nonsteady flow is a succession of steady-state systems).

- In a scheme of superposition a constant ¢” may be assumed for one of the elemen-
tary systems, when the other systems account for the variations.

4.1 SUPERPOSITION AND WATER RESOURCES
The principle of superposition may be applied when adding the following quantities:
¢, g (either the vectors or the compenents), ¢ and n.
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The law of linear resistance

I

I qx=—k9%i; q,,=—kDaa—(;

I is linear in g,, g, and @, since kD is constant, The law of continuity
! %+Z—?=§:(¢'—¢)=H=N

I

is linear in g, ¢,, @', ¢ and n.

The question of the water resources, applied to the conditions of this chapter, would
be the question of the origin of the water extracted from an aquifer where ¢’ is
maintained at given values, notwithstanding the extraction. It is clear that this water is
provided partly by lateral flow into the aquifer — as it was in the preceding section —
and partly by increase of the recharge n. The analysis of the latter point will not be
developed here, since maintaining the water level by changing the recharge is a
practical rather than a theoretical problem.

4.2 PARALLEL FLOW
In this section a series of flow systems will be examined, derived from one another:
by means of the principle of superposition. In all schemes parallel flow in a partly
confined aquifer is assumed. )

4.2.1 One canal

Figure 37. — The first scheme is defined by an aquifer with constant ¢’ = g,, bounded .
on the left by a canal, where @ = ¢,, and extending infinitely to the right. The for-
mulas are:

Po — ¢ = (95 — @ole ™™

g = gs8™""
where @ = \/I”_Ig and gy = I/kD k(D (g ~ ¥g)
kD
The law of linear resistance reads
g = kD deldx

I
I
-
| The law of continuity

&9




dg 'Y

= —— (D' - )
dx D (¢o—e
Eliminating ¢ yiclds
dz(‘P:} - ﬁo) 2 ¥
———— —a (P — ) =0
dxz 0 (P)

The general solution of this linear differential equation with constant coefficients is
Po— @ = €1 &% 4 67
where ¢, and ¢, are integration constants, to be determined from the following
conditions:
forx > 00, @ = @,
which implies ¢, = 0
forx =0, ¢ =,
which gives ¢, = ¢, — ¢o.
The formula for ¢ is found by differentiating the expression for ¢,

— P AT Fig. 37

Both ¢4 — ¢ and g are maximum at the canal border. With increasing x, they both
decrease proportionally to e~*; thus their ratio is the same in each section.

q 4¢ .
-— = = =]!kD.k’D
Po— @ @Po— Py /

90




Both vanish at infinite distance from the canal. (A series of values of e=?* can readily
be calculated, using the property that the function is multiplied by the same factor
e~4% cach time the argument increases with the same term Ax).

4.2.2 Two different phreatic levels
Figure 38. - Whereas in the previous section the scheme was determined by a value
of @', (), and a value of @, (¢,), in the next example it will be defined by two values
of ¢, (¢} and @3). The value of @) is characteristic of the left-hand part of the model
toinfinity: the value of @ applies to the right-hand part. The transition in the middle
section is abrupt.

Fig. 38

%

The ¢ diagram is symmetrical about the point A, where

P = @o = /0] +¢3)

This consideration reduces the problem to the previous one with, for the right hand
half of the aquifer

’ @rz - (Pll —ax
py—p=22_"te
2P 5
g=4qgoe¢ ~
" wherea = ¥/ and g, = /kD KD b2 = %1
kD V 2
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4.2.3 @' constant berween two canals .
Figure 39. - The aquifer is bounded by two parallel canals A and B, in which the
water levels correspond to the potentials ¢, and @, respectively. Between A and B,
9 = Po-

Vo : ; B
| | |
¢, : PP |
' i
o | ? : [
J | ' :
. ]
{ ¥'=P \i
| - N :
I |
— P _ |
o l/_N¢
9, | |

The solution reduces to that of Section 4.2.1 by the superposition of three systems,
1, II and 1II, whose sum is System IV.
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System 1:

- = tp'o in the top layer.

— ¢ = @, in both canals.

Tt is clear that no flow occurs (g = 0), while ¢ = ¢j, in all points of the aqulfer
System N:

- ¢' = 0 in the top layer.

- ¢ = u (unknown value} in canal A.

- In canal B, @ == ue™® = nu, which is the value ¢ would have according to the
formula of Sectionr 4.2.1, if no water were extracted from canal B, and the aquifer
extended to infinity to the right,

The values of ¢ and g in the aquifer as functions of x are determined by the formulas
of Section 4.2.1.

System 111 is the reverse of System II;

- @' = 0 in the top layer

- ¢ = v (unknown) in canal B

- Incanal A, o = ve™ = nv.

Summing the three systems and wrltmg ¢, and ¢, for ¢ in the canals A and B
respectively.

Qg + U+ nv =g,

Po + 4+ v = g,
which conditions determine & and v.
Since ¢, and ¢, may be positive as well as negative, the @ line of System TV may
assume different forms, some of which are indicated as examples in the figure (IVa,
[Vb, 1Vc). It can readily be shown that the inflection point corresponds to the section
where @ = @,.

| For ¢ = pg, dg/dx = 0, and therefore d?@fdx? =0

4.2.4 Arbitrary @' values
Between the sections A and B, ¢’ varies smoothly as an arbitrary, in principle non-
analytic function of x. To the left of A and to the right of B, to infinity, ¢’ is constant,
equal to @,.
The first step in solving the problem is to replace the smooth ¢’ curve of Fig, 40b by
the step curve of Fig. 40c. Calculation is then possible by multiple superposition,
according to Fig. 40d, vsing the formulas of Section 4.2.2,
"Another way of superposition is indicated in Fig. 40e. The elementary system,
recurring in this figure, can be calculated according to Fig. 40f, where, as an example,
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System II is found as the sum of Systems Ila and b, again of the type described in
Section 4.2.2,

4.2.5 Arbitrary @' values befween two canals
Figure 41. - The aquifer is bounded by two parallel canals whose water levels corre-
spond to the potentials ¢, and ¢@,. Between the canals, ¢, is given as an arbitrary,
generally non-analytic, function of x. The system is the sum of two elementary
Systems I and 11:
System I corresponds to that of the previous section defined by
— Absence of canals .
— " equal to zero outside the axes A and B to infinity.
— Values of ¢’ inside the canal axes equal to those of the present schems,
The flow system can be calculated following the methods indicated in the previous
section. In particular the values of @ in 4 and B can be found: (p,), and (i,};.
System II corresponds to that described in Section 4.2.3:
— In the axes 4 and B, the potentials are ¢, — {(p;); and @2 — {¢,), respectively.
- Between the canals ¢’ = 0.

4.3 RADIAL FLOW

4.3.1 Bessel funciions
Figure 42. — In the following sections solutions will be given in the form of Bessel
functions. Since the theory of these functions is not generally known, its relevant parts
will first be summarized. '
The differential equation

&y ldy_

—_ - y=0
dx?  x dx

1)

is a linear equation of tﬁe second order with second member = 0. If y = gblh (x) and

¥ = ¢, {x) are two particular solutiens, the general solution can be written as
y=rc; ¢ (%) + c2,(x} _

where ¢, and ¢, are integration constants. Traditionally the general solution is written as

() =, K{x}+ e Tp(x). |

The function f,(x) is a particular solution of (1), defined by t_he following conditions:

forx=0, Ii{x)=1
forx =0, Ii(x)=0 (o= dljdx)
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¥ oy Fig. 42

This function can be written as a series:
2 4 5]
X x X

Io(l)= 1 +?+:42—22 +6—-—~2422i -
For small values of x, J,{x) = I, as can be seen from the series.
The function Ky(x) Is also a particular solution of (1), for the conditions

forx=0 K,=.w

ferv=00 K,=0
These conditions do not define the function fully, since any multiple of K, would
satisfy them as well, The complete definition of the function, however, is generally

given in an indirect way, and will not be formulated here, nor will thc development
in a series. For small values of x,

Ko(x) = In (1,123/x)

As can be seen from these definitions, for arbitrary values of ¢, and ¢, (2) gives
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infinite values of y, either positive or negative, for both x = 0 and x = 0.
The derivatives of the functions /, and K, are traditionally indicated

d d
d_xIO(x) = I,(x) J;Ko(x) = — K,(x)

The function f,(x) can be written as a series

i x°

+
4.2 6.42.2°

. For small values of x, I;(x) = !/,x. The series for X,(x) will not be given. For small
values of x,

K,0) = Ux

x
="+
i >

In the problems of the following sections the quantity

z = x dyjdx
plays a rote. It is a solution of the differential equation
d’z 1
__; dz -0
dx x dx

which differs from the previous differential equation only in the sign of the second
term. The general solution can be written as

z = ¢, xK((x) + e;x]y{x)

where ¢, and ¢, are integration constants,

For the values of Ky, fo, K, and I, reference is made to mathematlcal tables, as listed
at the end of the publication. Sometimes the functions are indicated differently,
according 10 the following correlation:

3 IH“)(UC) K, (¥)
- ’5‘ HY (ix) = K, (x)

Jolix) = lo(x)
— if,(ix} = Ii(x)

4.3.2 Flow in and around a circular area
Figure 43 represents a cross-section of a circular area with radius R, inside of which
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@ = @3, and outside of which ¢’ = @), to infinity. Physically the scheme may
represent a circular, drained area, surrounded by marshes or by an area drained at a
higher level.

The solution can be written in Bessel functions:

For the outside part:

@ — ¢1 = m Kolar)
Q

—= = — marK(ar

52kD jark(ar)
For the inside part:

¢ = ¢ = nalo(ar)

= nyar I (ar)

2rnkD
where
a - er{D!
kD
J'l(':”") [l *
M, = — -—
‘ Ko(aR),(aR) + Io(aR)K (aR) (@ = ¢2)
K, (aR . ;
M (@k) (¢] — 03)

~ Ko(aR)(aR) + I(aR)K (aR)
| The law of linear resistance reads:
l

] Q= kDZ:rritip
] d

r
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the law of continuity:

a0 K
T =__2arlp — ¢
s (@ — ¢)

where ¢’ equals @) and @, in the outer and inner part respectively.
Elimination of @ gives

d*(p — ¢) 1&@-@). .
LA R (@ —~)=0
d(ar)? N ar  d(ar) @-e)

where

KD
kD
The general solution of this differential equation reads:

@ — @ = mKylar) + niqlar).
Substituting this value of @ in the law of linear resistance yields,

o
27kD

For the outer part
¢ =¢), m=m, and n=n,

For the inner part
@ =gy, m=my, and 5= 1,

g4 =

= — mar K ,(ar) + nari (ar).

* Thus the solution depends on the values of four constants mt,, 1, #1, and n,. These

values are determined by the following four conditions:

I. In the outer part

forr=c0, ¢—¢\ =0 (orQ=0) _
This condition gives in either way of formulation n, = 0, otherwise both ¢ — ¢,
and @ would be infinite, Thus in the outer part
¢ — @, =m Kar)
Q

% _ = —marK (ar
kD arkdan)
2. In the inner part the symmetry condition
forr=0 0=0 :
gives my, = 0, otherwise O would be infinite for r = 0. Thus in the inner part
@ — ¢y = mlglar) '
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3. and 4. For r = R the values of ¢ and ¢ of the inner and outer part reach the
same value. Thus

nlo(@Ry — m K(aR) = ¢, — @3

—m K, (aR) = n,1,(aR)
From these two equations m, and #, can be calculated.

= nqarl (ar}

4.3.3 Flow around a well

Figure 44, — From a well in an infinite aquifer (¢ = ") water is extracted a1 a constant
rate (5. The problem is essentially the same as that for the outer part in the previous
section, when R reduces to the radius ry of the well, Unlike a well in a phreatic or a
fully confined aquifer, the present scheme corresponds to a steady flow system. The

formulas are:

’ . QU
1 — = — K (ar
() ¢-¢ SeiD oar)
2) Q= QurK(ar) ' a
where ' . Lo
q = \/k’fﬂ’ b o A
kD Fig. 44

—— o —

In the previous section the formuias for the outer part were (writing ¢! instead of
¢}, and rg instead of R):

(3) ¢ — @' = mKolar)
@) ¢2nkD = — mark (ar)
When substituting in (4) the condition

forr=re Q=00

m, can be found:
my = - Qof2nkDaroK {ar,)

and since for small values of ar, K, (ar) — 1far,
m, = — @uf2nkD

which, substituted in (3) and (4), gives (1) and (2)
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For small values ol ar,

Kq(ar) = In 1,123

and
K. (ar) - 1far
Thus, at short distance from the well

. Qy  L123
—p = = In
¢ : i 2rkD ar

Q=0

‘The constant value of  indicates that the recharge in a small circular area around the
well may be neglected because of the small surface area, notwithstanding the great
values of @' — ¢. Thus the logarithmic funciion known from confined aquifers
reappears. Whereas in the case of a confined aquifer. the drawdown was infinitely
great, it is now limited to a finite value. The explanation is that in a confined aquifer
the full rate Qy is transported through the aquifer from infinite distance to the weli,
whereas in a partly confined aquifer, due to the recharge, this quantity increases from -
zero to the extraction rate of the well,

As in problems with # = 0, there is no radius of influence. For practical purposes,
however, a limit can be defined conventionally, e.g. as the distance from the well
where ¢ reduces to 59 or 109 of the rate of extraction from the well.

4.3.4 Several wells
Figure 45. — If several wells A, B, C, D, E etc. are sited in an aquifer with constant
¢', extending to infinity, the question may arise: what is the influence of all wells
together on the potential ¢ at a point P? It can be found from superposition of the
following systems.
— System I without wells, where @' has the real value. Since in this system the aqulfer
is at rest, ¢ = ¢’ at all poinis, e.g. at P.
- System II, characterized by ¢’ = ( and extraction from well 4 only.
~ System 111, characterized by ¢’ = 0 and extraction from well B only,
-~ Similarly for the other wells,
. The calculation does not present any special difficulty, but if it has to be made for a
great number of points P, it can be speeded up by the following method, To explain
the principle, it will fifst be assumed that the extraction rate from all wells is equal to
unity.
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The plan of the wells is drawn to a certain scale on white paper. To the same scale, but
on transparent paper, concentric circles are drawn around a well with unit discharge,
at such distances that the drawdown on each circle corresponds to a round figure:
1 m, 0,90 m, 0,80 mn, 0,70 m etc. If the centre of the circles is faid successively on each
well, the drawdown at point P can’be read each time, and the results can be summed.
But since the influence at P of a well at A is the same as the influence at A of a well
with the same capacity at P, the centre of the circles can more conveniently be laid
on the point P, and the values at 4, B, C, D etc. read and summed, which gives the
same result, '

If the discharges are different, the same method can be used, if before summation each
reading is multiplied by the extraction rate from the corresponding well.

4.3.5 Canal of limited length

Figure 46. — From a canal with limited length L, in an infinite aquifer with ¢’ = 0,
water-is extracted at'a _r,ait; gl.. For an approximate calculation the canal can be re-
placed by a series of wells i'J_Elf equal distances b, each exiracting a quantity of flow gb.
This arrangement differs in two points from the reality; firsily in that the drawdown in
the canal is smaller than that in the wells and greater than that midway between two
wells; secondly in that the drawdown in the wells near the extremities of the canal is
smaller than that in the wells near the centre, whereas the water table in the canal is
level. Although the problem can be solved for wells with equal drawdown and different
extraction rates, this solution, requiring iteration methods, will not be examined here.
Equal exiracting rates from the wells will be assumed, which leads to the following
results: '

1. At a point P, some distance from the canal, the drawdown can be calculated by
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summation of the influences of the wells, applying the method developed in the previous
section. If the number of wells is not too small, and the distance from the canal
sufficiently great compared with the distance between the wells in-the series, the ap-
proximation may suffice for an orientating calculation.

2. At any point of the canal at distances.x; and x, from the extremities, the draw-
down can be found at its exact value by increasing the number of wells infinitely, the
extraction rate of each well becoming gdx. Under these conditions a varying draw-
downin the axis is found, smallest near the ends,'greatest in the middle section. At any
point at distances x, and x; from the ends of the canal, (x, -+ x, = L), the drawdown
is :

azakD

3. If the length of the canal is extended infinitely, the drawdown at all points of the
canal becomes the same. Its value is without approximation

o= — 4q [ f :] j;o(ax)d(axj + f :zKo(ax)d(ax)J. |

q oo
= — 2 Ko(ax)d{ax
¢ a2nakD fo olax)d(ax)
and since
[+ .
n
Ko(s)ds = =,
[ xors =7
o= — gf2akD .

which was the result obtained in Section 4.2.1.
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5. NONSTEADY FLOW (CONSTANT D)

5.1 FUNDAMENTALS

5.1.1 Elasticiiy

Throughout this chapter inelastic water and soil will be assumed. In reality three
factors play a role: '

(1) the elasticity of ihe water, (2) the elasticity of the grain material and (3} the changes
in pore space due to slight displacements of the grains (compaction). Generally (2}
can be neglected in comparison with (I). Only the eleasticity of the water and the
displacements of the grains need be considered. Thus the term elasticity may be
applied to the sum of these two influences.

In the case of a confined aquifer the propagation of pressure waves is instantancous
when elasticity and inertia are neglected; when these factors are taken inlo account, a
rapid, but not instantaneous, propagation is found.

In the case of a phreatic aquifer water may be released in two ways: (1} lowering of
the water table and (2) elasticity due to lowering of the pressure. If the losses of
energy in a vertical direction are neglected, both are proportional to the fall of the
water table. They may be added, but then (2) is neghgible compared- with (1).

In the case of a partly confined aquifer the elasticity of a clayey or silty top layer may
be higher, and of another order of magnitude than that of the aquifer, Tt should
therefore be siudied if this elasticity plays a role, and under which circumstances.
Up to now fragmentary studies have been made on the influence of elasticity on
nonsteady flow problems. They should be completed, and the order of magnitude of .
the quantities involved examined, so as to define the conditions in which the effect of
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elasticity is to be néglected or taken into account. Since the results of such a study are
not yet completely available, the effect of elasuclty will be ignored in the following
chapters.

5.1.2. Differential equations and superposition

The differential equations read:
— law of linear resistance

do o
— k-2~ — kDX
4 ax &= By

= law of continuity

dx  dy
where

a. In a confined aquifer
N=0

while D is constant. The formulas define ¢ and ¢ (qx and g,) as functions of x, yand ¢.
b. In a partly confined aquifer

k' e’
N=—(@-9)=n—pn—
D ot
while D is constant, If ¢’ is given as a function of x, y ant ¢, the forrulas define ¢, 4
and » as functions of the same variables. If n is gwen they define ¢’ instead of n.
¢. In a phreatic aquer
N=n-~—-yu 5_(,0
dt _
while D is either approximately a constant {independent of x, y and #) or a variable,
related to ¢ by

D= ¢ +c
¥
where ¢ depends on the choice of the reference level. In either case the equations
define ¢ and ¢ as functions of x, y and ¢, if n is given as a function of the same variables.

Normally the formulas of a scheme should be deduced from the above equations,
combined with conditions (initial condition and boundary conditions). But in the
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exampies of the following sections they have been found in an indirect way, and the -
condiiions have been established, if at all, after the mathematical solutlon had been
found. Moreover, in the case of sinusoidal waves, the mmal condmon is- .replaced by
the condition of perpetual repetition. Thus, no example of a systematlc solution has
been given.
The possibility of superposition depends on the same equations. If D is a constant,
either exactly or approximately, summation is possible for the values of ¢, ¢, Nand »
{and ¢’ in the case of a partly confined aquifer). The derivatives of ¢, ¢’ and g with
_respect to x, y and f are summed as welt as the quantities themselves. The proof
follows directly from the fact that the equations are linear in these quantities.

5.1.3- Water resources

With respect to the water resources of an aquifer, nonsteady flow may be considerad
from two points of view:

1. From the moment extraction from a phreatic aquifer begins, the water table falls
until steady flow is reached. The quantity of water releaséd constitutes a yield of the
aquifer, but its calcolation follows from comparison between the initial and final
steady state, and therefore does not involve the theory of nonsteady flow. This
aspect of the problem will not be discussed in this chapter.

2. The theory of nonsteady fiow applies when the extraction during the seasons does
not correspond to the quantities which the aquifer receives from recharge and lateral
inflow. Dry seasons and periods of shortage or lack of water in the rivers play a role,
especially when they coincide with periods of high water demands, e.g. for irrigation.
A phreatic aquifer may then serve as a storage basin. A partly confined aquifer with
varying water table acts in the same way, but its capacity is less, since the effective
pore space of the top layer is generally low. Engineering problems in this category are
generally complicated. Only elementary problems will be dealt with, to be used as a
basis for the solution of practical problems,

5.2 ELEMENTARY SINUSOIDAL WAVES (PARALLEL FLOW)

Figure 47. — In this section four schemes A, B, C and D will be examined. System D,
shown in the figure, is the most general. For certain particular values of the constants
involved it can be reduced to any of the schemes A, B or C. The systemns will first be
examined separately (Sections 5.2.1 — 5.2.4). Then the reduction of the formulas of D
to those of 4, B and C will be shown (Sections 5.2.5 — 5.2.7).

The schemes are commonly characterized by nonsteady, parallel low in an aquifer
with constant D, without recharge, traversed by a long straight canal; the aquiler
extends at either side to infinity where ¢ = 0. In the canal the water level fluctuates
around zero level as a sine function of time, according to
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Fig. 47 . Fig. 48

@ = @ sin wt

where @ = 2nfT (T = period).

The four schemes are different as to the nature of the aquifer:

A: Phreatic aquifer. .

B: Partly confined aquifer (¢” = 0).

C: Confined aquifer.

D: Partly confined aquifer with variable ¢’.

The formulas for both sides of the canal will be given, but for the analysis, only the
right-hand side will be considered. The formulas of both sides will be used in the next
section {3.3).

5.2.1 Scheme A (phreatic aquifer) .

Figure 48. — The formulas are:
@ = o™ sin (it 4+ ax)
§-= goe®™* sin (et 4+ B + ax)

Go = Qo +/ HOKD

where @4 and g, are positive numbers: the sign of ¢ or ¢ varies with the sign of the
sine function.

The values of # and a are different at either side of the canal

- At the right-hand side

"3 a=- (Mo
2kD
Since a is negative, e** decreases with increasing x, which means that the amplitudes

of ¢ and g decrease to the right.
— At the left-hand side
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g= _22 -a = + \/ﬂ
8 2kD ) .
Since a is positive, e** decreases with decreasing x; thus the amplitudes of ¢ and ¢
decrease to the left.

The differential equations are:
— The law of linear resistance:

() q=kp %
ox
- The law of continuity:

: d 8
@ 2 =p2
x

ot

I

I

f

|

I

I

I

I

I .

| At the outset it is supposed that the solution has the following form:
| (3) @ = poe™ sin (wt + ax)

I g = goe™ sin (wt + f + ax)

| to be written as:

| 4 g = goe™ [sin(wr + ax)cos § -+ cos (wf + ax)sin §]
| where g and § are still unknown,

I From (3) and (4) the values of g—f’ i—(’; and gg can be found by differentiation,
| Upon substitution in (1) and (2) two equations are found containing terms with
| sin (¢ 4+ ax) and cos (wt + ax). The solution should be valid for all values of
| x and ¢, which implies that the terms with sin (@ + ax) and with cos (wi + ax)
| satisfyindividually. Thus each equation separates into two conditions, which gives
| a total of four equations.

| (5) Sine terms of (1): g cos § = kDgga

| (6) Cosine terms of (1): g, sin § = kDgpga

| (7) Sine terms of (2): cos f —sin f =0

| (8) Cosine terms of (2): goa (sin 8 + cos B) = pp.w

| From (5} and (6), or from (7), it follows that cos B = sin B, which corresponds to
I

I

|

I

|

I

: 5 1
ﬁ=§2norﬁ=§2n.
5
— The value f = §2n applies to the right-hand side of the aquifer, It corresponds

1
locosﬁ=sinﬁ=—§\/2
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From (S): Goft = — PokDy/2
. 1
From (8): go@ = — 3 V20w
Thus ¢, and a can be calcutated from their ratio and their product.

I
- The value of § = §21r applies to the left-hand side of the aquifer. It results in

cosﬁ=sinﬁ=—;‘/2'

Golt = @okD/2

I
|
|
|
|
|
|
I
l
| P
| God = 5 l/2 Pojta.

I

From the given formulas the following properties of the flow system can be derived
‘(valid for the right-hand side of the aquifer):

- @ and ¢ are sine functions of the iime with the same period T = 2n/w. Both vary '
around the zero value. As to ¢, this means that the water level in the canal as well as
in any point of the aquifer varies around an average elevation equal to zero. As to g,
it means that in any section the water movement is alternatively towards the left and
towards the right, without resulting flow. .

— In the canal the amplitudes of ¢ and ¢ are ¢, and g,. Both are damped with in-
" creasing x, vanishing at great distance from the canal. The law of damping for ¢ and

" g is characterized by a commeon factor e®*. Thus in any section the ratio of the am-
plitudes of @ and ¢ is the same, and equal to that in the canal

z—:= ]/,ucoko

3 . S
- At the canal border the phase of 4 leads thatof (pby§ 2n. At distance x this differ-

ence is maintained, but both phases are commonly delayed by | ax | with respect to
the canal. , '

= The time lag [ ax |, propertional to x, has as an effect that the phase of ¢ or ¢ does
not change for an observer moving away from the canal at a constant velocity w/a,
while the amplitudes, although decreasing, conserve their ratio. This particularity has
given rise to the notion of (damped) waves, propagating with a constant velocity
¢ = wja. Two remarks should be made concerning this point: firstly the speed of the
waves has nothing to do with the velocity of the water. The first is constant to the
right; the second varying in direction. Their order of magnitude may also be very -
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different. Secondly, the notion of a constant speed of propagation is reduced to this
problem. In other similar problems (e.g. Section 5.4.1) no hydraulic characteristic can
be found which remains unchanged for an observer moving away from the canal at
constant velocity. :
- Since the phase lag with respect 10 the canal is proportional 10-x, it can theoretically
amount to any value: n, 2r, etc. For a difference 7 the movement would be opposite
to that of the canal; for 2m it would be in phase again. Yet these greater differences are
not relevant because the waves are damped too much. For a lag of 7 the amplitudes
of ¢ and ¢ are already reduced to 4% of their values in the canal,
- It is a basic assumption of the present studies that the losses of energy in a vertical
direction are negligible. If the formulas are applied to homogeneous soil, this means
that the vertical velocity componenis are small compared with the hortizontal com-
ponents. The formulas given define for a section at distance x from the canal, ¢ and ¢
as functions of time, and therefore the vertical velocity component at the water surface,
related to ¢, and the horizontal component in the whole section, related to g. Both are
sine functions of time. When comparing their amplitudes the condition is that

—E- » 1

poD
Rapid variations, as caused by tidal movement for instance, do not always satisfy this
condition.

At distance x from the canal, the vertical velocity component at the surface is

l
! Iy 0x
I U= p— = pweee”™ cos (wf + ax)
| . G .

| with a half amplitude of gwpae®™ (the word velocity taken in the sense of the volume
| of water displaced per unit time through a unit area including the section over the
| grains). At that distance from the canal the horizontal component of the velocity is
| equal to

I

I

I

|

|

1

4 _ 9o gox
D D

V= =

sin (wt + f + ax)

with a half-amplitude or%e‘”‘. 'Comparison of the amplitudes gives the result

stated.
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. 5.2.2. Scheme B (partly confined aquifer, ' = 0}

Figure 49. - The formulas are

P = Poe™ sin wi
g = go¢™ sin (wt + )
Go = 9o JAD k'[D’

where @, and ¢q are positive.

"~ For the right-hand part of the aquifer

== a=—V%

- For the lefi-hand part

B=0 a=+ ki
kD

I The differential equations are
| - The law of linear resistance
| \
| (1) g=kp %
dx
— The law of continuity
k!

dq
) L=
()6x -

time.

|

|

|

|

| +

| Tn these equations ¢ does not appear explicitly, although ¢ and ¢ are functions of
|

|

It is assumed that the solution has the following form

P = oe®™ sin wt
§ = oe® sin (w? + B}

to be written as

g = go¢°* (sin wi cos f -+ cos we sin fi)

and (2), at which occasion the values of ¢ and f are found,

Substitution gives as conditions

- The cosine terms of (1) and (2): .sin =0

— The sine terms of ([):

|

I

I *

| These formulas must be verified by substitution in the differential equations (I)
1 '

[

|

|
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!
|
I
I
|
I
|
I
|
|

%o _ kDo
a cosf

— The sine terms of {2):

KD
god = ! Po
cos f )
The solutionsinf =0, f=ncosf = — 1 corrcsponds to the right-hand part of -

the aquifer; the solution sin § = 0, § =0, cos § = - 1 to the left-hand part. In
either case g, and a can be calculated from their ratio and their product.

These formulas express the following properties (considering the nght—hand part of
the aquifer):

~ In any section, @ as well as ¢ vary around zeco as a sine function of time.

- The amplitudes of ¢ and ¢ both decrease proportlonally to ¢ (where a is negative).
Their ratio at the canal

= l/kn I;’,H)’

is conserved in all sections, Both amplitudes vanish at infinite distance from the ‘canal.
- Since in the expressions for ¢ and ¢ the argument of the sine function is independent .
of x, the propagation of the waves is instantaneous, although damped.

5.2.3 Scheme C (confined aquifer)

Figure 50. — The formula for ¢ at both sides of the canal is the same as for the canal:

@ = @q sin Wi

while

g=10
The proof is given by substitution in the differential equations

- The law of linear resistance:

dg
= kD L
1 fx
~ The law of continuity:
o _
83:
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Fig. 50 . Fig. 51

These formulas represent the instantaneous and not damped propagation of pressure
variations in siagnant water. This exireme result is due to the basic assumptions,
which exclude elasticity and inertia:

5.2.4 Scheme D (partly confined aquifer with varying ¢')
Figure 51. — The formulas are:
() =™ sin (et + bx)
(2) @ = @ge** sin (wt + bx + «)
3 q=qgoe™sin{w -bx -+ f)
where @,, @, and g, are positive; the sign of @, @' or g varies with the sign of the

corresponding sine function.
As to the constants, a is defined by

#w
4 | — -
@ -0 =g

: 2 ’ 2
where 0 < (— o) < Tn The limit values — ¢ == 0 and — « = —;will be studied sepa-

rately.
§ is determined by

ki’ DF

¢ g2 =" 12 (= corg- )

- For the right-hand part of the aquifer
2n 5

— < f <« 2n.
2 A 3
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Both sin § and cos f are negative. L
— For the left-hand part of the aguifer

Ocﬁ<é2n.

. Both sin # and cos f are positive.

@4 is detcrmined by

(6) 95=@ocosa

where cos o (= cos (— @) is always positive.
g 15 defined by

M 0= goviwkDcosa,

positive by definition.
g is defined by

(8) a= KL cos fi = I! Hweosa cos
PokD kD

whete ¢ has the same sign as cos f§.
b is defined either by

@ b=-3 snp= VL"OW sin B
PokD kD

or by
b=aitgf

where sin ff, cos #, @ and b have the same sign, and g § is always positive..

The differential equations are:
— The law of linear resistance

(1) q=kp2®
ox
g o K

(1) —=p4 =—(¢— @)

l

|

|

| |
| — The law of continuity:

|

|[ ox o D
I

These three differential equations define @, ¢’ and g as functions of x and v,

114



Formulas (1), (2) and (3) are admitted tentatively as a solution, with unknown
values of «, §, ¢', go, a and b. From them d¢/éx, 8¢{0x and G¢'/dt are derived by
differentiation. Substitution in (10) and (11) gives separaie conditions for the sine
and cosine terms, a total of six.

o
12 a= Cos
(12) kD B

do . .
13 b= sin
(13) ookD B

pr

‘ . e k
(14)  qolacos f — bsin f) = — p'ppwsine = > (9o — 90 COs @)

N
f

(15) go(bcosf + asinB) = p'owcose = — % @ sin o

_ These six equations define the six constants «, #, o, go, 4 and b,

Subsitituting the values of a and b from (12) and (13) into (14) and (15) gives:

4 . ) .
(16) q“’ cos2f = — pohwsina = %((Po — @ €OS &)

Pok
qZ . B
(17 - sin2f = worwcose = — — @) sina
Pok ' D
From the last iwo members of (17}
o '
(18 fgu=— - —
) k.‘/Dr‘
From the first members of (16) and (17)
Kip

(19) 1g2f =~
L

From the last members of (14) and (15)

— g COS &
tgoc == ?_q_ﬁoo—
(g Sin o

written otherwise:

(20) @5 = @y cos
From (18) it follows that 7g (— a} is positive; from (20) that cos (— «) is positive.

- 2= _ . . .
Thus 0 < —a < e Fromthe first two members of (16), since sin « is negative, it
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follows that cos 28 is positive; from the corresponding members of (17) that sin 28
is positive, thus 0 < 2§ < 2rfd and 0 < B < 2x/8. This condition applies to the
“left-hand part of the aquifer. But since the limits of 28 may be increased by 2=,
- those of 6 may be increased by 2n/2. Thus a second range for § isfound:

- 2m
- 2?:, applymg to the r1ght~hand part of the aquifer,

I

I

I

|

|

I 2
| - For the nght-hand part of the aquifer sin g and cos fi are negative; thus, ac-
| cording to (3) and (9), a and b are negative. e‘“ decreases with increasing x, i.e.

| towards the right.

| - For the left-hand part sin # and cos § are positive; a and b are positive, ¢*
| decreases with increasing x, i.e. towards the left.

The characteristics of flow system I may be summarized as follows (for the right-
hand part of the aquifer).

- Tn the canal, as well as in any section of the aquifer, ¢ and ¢’ vary around the zero
value. The flow rate ¢ varies equally around zero, which means that the water moves’
alternately in both directions, without any net displacement resulting.

— The amplitudes of ¢, @' and ¢ are in the same ratio to.each other in all sections of
the aquifer, They are commonly multiplied by a factor ¢, which decreases with
increasing distance to the canal and vanishes at infinity. :

- At the canal border ¢’ lags behind ¢ by a difference in phase varying from zero to
14, T, depending on the constants of the system, whereas ¢ is in advance of @ by a
difference varying from 1/2 Tto 5/8 T.

— In a section at distance x from the canal the phases of i, ¢ and ¢ still have the
same differences, but are commonly delayed by bx, This characteristic corresponds
to the notion of waves propagating with a velocity ¢ = w/b.

5.2.5 Reduction of scheme D to scheme A (phreatic aquifér)
If in a marginal case

r

yaw

=tg(— @)~ 0
kip g
it follows that
Po _ cos{—a)—1
Po

which means that the amplitude of ¢’ approaches that of ¢. This condition may
.correspond to different physical characteristics of the scheme, all resulting in the same.
effect that the losses of energy in the top layer due to the vertical velocity components
become negligible.
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- High values of &', - When &’ increases infinitely, the top layer assumes the character
of the aquifer, in which the losses of energy duve to the vertical velocity components
are neglected by assumption. Thus the aquifer becomes phreatic,

- Lowvalues of p’. - When y" decreases, the water transport through the top layer in
vertical direction, corresponding to a given displacement of the water level, decreases,
and vanishes when g’ — 0. Thus, for given value of &', the corresponding losses of
energy vanish, which renders the flow system similar to that of a phreatic aquifer.

- Low values of w. - Since T = 2rfw, this condition corresponds to very slow
oscillations, where the vertical water transport in the top layer causes low velocities
with negligible losses of energy, which again leads to analogy with the phreatic
aquifer.

As a further consequence, according to (7)

do = @0/ WWKD '
where ;1" has been written for the effective porosity, which in the case of a phreatic
aquifer may be indicated by u.

. 5 | L .
Finally tg{— &) — O corresponds to § — 3 2m (at the right-hand side of the canal),

which in turn corresponds to
’ ' -
sinﬁas.wcllascosﬂ—»—lx/%aaswc]l as b — [fH@
- 2

I
I
|
|
!
|
|t
|
| 2D

5.2.6 Reduction of scheme D 1o scheme B (parily conﬁned aquifer, ' = 0)
If in another margmal case

Q = cotg (— a}
Ho

- is small, but not zero, it follows that

(P" =¢os{— &) — il
Ty W

As in the previous section, this condition may correspond to different physical
characteristics, all resulting in the same effect that the amplnude of go becomes
negligible compared with that of .

- Low values of k', which strongly damp the oscillations of ¢’.

— High values of @, corresponding to rapid oscillations of ¢, which cannot be followed
by the water table.
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— High values of ,u} would give the same effect, but g’ is limited by the maximum
values of the effective porosity in natural soils.

Kip

Substituting cos & = in (7), where u' cancels cut:
. e

@b = 0o/ KDK'[D’
According to (5)

D
o'

ig2f =

For small values of the right-hand side of the equation, 2§ is (near zero or) near

Il !

ﬁﬂ, and § near 7, while sin B is about —

and cos f near — ]

.f

: ’D’ k'f D
According to (8), for cos & — — V /

Accordingte (9), b = arg f. Smce 1g B issmall, | bx | is small compared with | ax |.
As was shown in theanalysis of Scheme A, values of | ax | > = are of little interest,
because ¢~ ™ reduces to about 4% only. Thus bx is only a fraction of z, and can be
neglecied as a difference in phase.

5.2.7 Reduction of scheme D to scheme C {(confined aguifer)

If finally

ka =coig(—a)=10
w -

- it follows that

cos(—ea)y=0

and therefore

@0 =@ocos{—a) =0

This condition corresponds to &’ = 0. The iop laver is impermeable; the phreatic level
does not raact on the variations of .

According to (7) _
Go = Po V1'wkD cos a
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| also go =0, which corresponds to the propagation of pressure waves through
| stagnant water.

| Since ¢’ = 0 and ¢ = 0, the only formula remaining is that for ¢:

| @ = @oe” sin (wt + bx) .

| where ¢ = b = 0 (according to (8) and (9) both are proportional to g, which is
| zero), thus with @ = 0 the waves are not damped, and with 5 = 0 the propagation
| is instantaneous.

5.3 SUPERPOSED SINUSOIDAL WAVES (PARALLEL FLOW)
The assumptions underlying the following sections are much the same as those of
Section 5.2.1. In both cases parallel flow is assumed in a phreatic aquifer with constant
D and # = 0. The difference is in the boundary conditions, Whereas in Section 5.2.1,
the aquifer was bounded at one side by a canal where

@ = o Sin W,

in the following sections it is bounded at both sides. The formulas will be found by
applyingthe principle of superposition, taking the formulas of Section 5.2.1 as a base.
These will be repeated here in a slightly different formutation, which is morc practical
for the purpose. _

Writing o for the absolute value of @, and u for the absolute value of the distance
between the canal and the point in question, while g remains positive when directed
to the left, the formulas become:

For waves propagating in both directions:

@ = @ge~™ sin (@f — au)

For waves propagating to the right:
e ( 2n )
g = — qqe “sin wr+E—au
For waves propagating to the left:
' s ( 2 )
g = go¢ “sin wt+?—au

where

do = @o \/,uka—= wgakDJZ; a= VED"
- kD
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Fig. 52

5.3.1 Constani ¢ as a boundary condirion

e |
Figure 52. - The problem is to describe the water movement between the canals A and ‘
B, if in A the potential is a sine function of time ) ‘

|

@ = @, sin wr,

and in B coustant, equal to zero.
The solution can be found by superposing an infinite series of schemes similar to that
of Section 5.2.1., each characterized by one canal sited in an infinite aquifer, while the
potential in the canal varies according to

P = @¢ Sin wi
if the canal is marked with a plus sign in the figure, and to

® = — @y sin wt

if marked with a minus sign.
. The solution is

P = o Zpe~™ sin (ot — au)
g = gozse *sin (wt 4 %ﬂ - au)

where in the different terms successively
p=+1, s=—1, u=ux

—1 -1 2—-x

+1 —1 U4 x

+1 —1 4 + x

—1 =1 6l — x

+1 —1 6]+ x
efc.

@0 = Po VpwkD = otk D\/2; & = v/ pwf2kD

120




| The proof follows from the fact that the figure represents symmetry with opposite
| signs as to both canal axes, so that in canal B all ¢ variations counterbalance each
| other in pairs, whereas in canal A the variations in the canal itself remains as the

| only influence.

In principle another method can be followed, which may be preferable if the series
converges slowly. If the summation is restricted.to the first two terms, the condition
i = 0 in canal B is satisfied, but ¢ in canal A would be '
. |

© = Qg Sin f — @ge 2" sin (wf — 2a))
which is not the true boundary condition

@ = (o Sin ot
but can be written in the form of a single sine function

¢ = ¢ @y sin {wt + ¢;)

Thus the formulas for ¢ and ¢ as functions of x and ¢, found by summing only the
first two terms, can be adjusted by dividing the values of @ and ¢ by ¢,, and delaying
their phases by ¢,. The détermination of ¢, and .c, may be done analytically or
. graphically.

5.3.2 g = O uas a boundary condition
Figure 53, — The model is similar to that of the previous section. In canal A, ¢ varies
. in the same way, according to

@ = g 5in wt

Fig. 53
A C
| o
- 21 24 — t —IL 24 24
+ - + + -
. . . * » ]
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but the boundary condition on line B is
g=20

This mathematical condition physicaily represents either an impermeable boundary,
" as indicated in the upper part of the figore, or the symmetry axis of an aquifer where
-in canal C, ¢ varies in the same way as in A, as indicated in the lower part of the
figure.

The solution can be found in the same way as in the previous section by superposition
of an infinite number of systems, each characterized by a single caral in an infinite
aquifer. The variations of ¢ in these canals are equal or opposite to those in canal A,
according to the plus or minus sign in the figure, ’
The solution can be expressed in the form of a series

p= cpﬁ Xpe ™ sin (wr — o)

o mau In

g = goLs e sin (mt + n —.&'H)

where in the different terms successively

p=+1 s=—1, u=x

+1 +1 2t — x

—1 +1 2+ x

-1 —1 4l — x

+1 1 4f + x

+1 +1 6! — x

-1 6l 4 x
efc.

Go = @o/ HkD = pyakD \/2_ o= \/ncﬁ,’ZkD

| * The proof follows from the fact thar the figure represents symmetry with respect
| toline B, which implies 4 = 0 in B. The symmetry with opposite signs about line
| A means that the influence of all canals on the ¢ value in A cancel out in pairs,
| with the exception of the influence of the canal itself.

As in the previous section the summation may be restricted to the first two terms,
and the result adjusted in the way indicated.

3.3.3 Periodic variations in recharge
Figure 54 represents a cross-section of a strip of land or an elongate island. The
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potential @ of the {fresh) water at both sides is constant, equal to zero, The recharge n
varies as a cosing function of time, according to

=M, 1 He COS Wt
If the period is one year, this formula may represent seasonal variations in the re-
charge. The fizure shows these variations in two different suppositions: for a i, value
relatively small compared with 2, and for ny, = 1y, which may correspond to the
alternation of wet and dry seasons.
The solution (System IV) is found by superposition ol‘ three elementary systems,
I, IT and TIT,
System I is characterized by
- constant recharge »,, and
- potentials ¢ — 0 at both sides.
These conditions describe a steady flow system, as was examined in Sccnon 2.2.1.
The formulas are:

- ' ' [
= x(I—x =n (_=x
3 k 5 U=x)y g=n 5 )
Syster‘n 1I is characterized by

— recharge n = ng c0s wt, and

~ potential variations at both sides

o -
Q= — sin (0‘

ner

The recharge 7 = n, cos wi, if represented physically, would correspond to an alter-
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. nation of recharge and evaporation. If such alternations occurred in an aquifer
extending in all directions to infinity, they would create uniform oscillations of the
water level, corresponding to variations in ¢ defined by

do -

— = _(n cos wf) -
&t ¢

or upen integration

Hy
¢ = 2 sin ot
s -
If the aquifer were limited, but the water level at both sides varied in the same way,
the level in the aquifer would also move up and down as a horizontal plane, according
to the given formulas, and no lateral flow would occur:

qg=20

~ System III is characterized by
- recharge n = 0, and
- variations of ¢ at both sides according to

- ng .
@ = ~— —Zsin w1

HW
so as to counterbalance the movements introduced in System II. The formulas of
System III have been given in the preceding section for a d1stance 2/ between the
‘canals instead of 7.
Thus, by summing the equations of the three elementary systems, those of System IV
are obtained;

g=_——x{l—x)+ "0 sin w1 - "lEp ™™ sin (@t — aw)
Zk ‘ 117 N1 171

qg=n (-lr - x) S Zse"‘"sin(wt + E - o:u)
‘ 2 o/ 2 g

where o = lg’ H® and in the terms successively:

2kD
p=+I1, s3=—=-1, u=x +1 —1 2[4+ x
+1 +1 I—x +1 +1 3 —x
—1 +1 i+ =x —1 -+1 3+ x
—1 —1 21— x etc,
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5.4 SUDDEN CHANGE IN BOUNDARY CONDITION. PARALLEL FLOW

5.4.1 Basic formulas
Figure 55. - Again in this section the systems are characterized by parallel flow in a
phreatic aquifer with constant-D, and » = 0. The aquifer is bounded on the left by a
canal, and extends ‘infinitely to the right. The water movement is discontinucus at
the mement ¢ = 0. Before that moment, the aquifer was at rest (¢ = 0, ¢ = 0).

Fig. 55

From that moment onwards it is under the influence of a given variation in the canal,
defined either as
@ =c "

or as

g = eyt 12 '

where ¢, and ¢, are constants, and m a parameter.
The series of solutions to be examined (depending on the parameter m) can be
written-in the form

(1) o = 1"f(u),
@ q=amy

‘q = 1_\/;dc_D.and I =d’;.
2 : du

Ly/#
where u =— |/ — —,
2V kD o/
The function f{&) is a solution of the linear differential equation
I+ 2uf = amf =0

{or the conditions
foru=oc0, f=70
foru=0, f=c¢

125



'(4)a

The differential equations are:
~ The law of linear resistance

3) q=kp 22
dx

— The law of continuity:

O(P
X @t

— The solution

(1) o = 7fu)
is to be checked by substitution into the differential equations (3) and (4). Differ-
entiating (1} with respect to x and substltutmg in (3} yields

@ g=a" "y :
Differentiating (2) with respect to x gives

2
T2 gy

Differentiating (1) with respect to ¢ gives
6:—(0 =1 (mj‘-—'-l' uf’)
ot 2

When these values are substituted in (4) thé result can be written in terms of f
and w-only, which confirms that the structure of formula (1) was right:

74 2uf —~ dmf =0

This differential equation relating f to u is of the second order. 1ts solution is
defined by two conditions, for which are chosen:

- Foru=o00,f=0

The value ¥ = oo corresponds to + = 0 as well as to x = co, while f = 0 cor-

- responds to ¢ = 0. Thus the above condition is the combined expression of

the initial condition:
forte=0, =0
and the boundary condition at infinite distance from the canal:
forx =00, 0 =0 '
~Foru=40, f=c¢ )
The value u = 0 corresponds to x = 0 or ¢ = 0. Thus the condition expresses
both
forx =0 ¢ =ct"
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which is the boundary condition at the canal, and

fort=0c0 ¢=c" .
The state at ¥ = <o need not be considered here, since the basic assumption of the
problem was that D2 is constant, Of any variation of ¢ in the canal, proportional to
a power of ¢, only the first period is to be considered, when the level variation is
negligible in comparison to D. The only exception is the casem = 0, where indeed
for t=cw, p=ct® =c¢ '
{see below for the analysis of that case).

Four cases will be examined:

- m = Q0. At ¢ = { the potential in the canal is suddenly lowered, and kept constant
from that moment enwards {p = ¢). _

- m = 1;2. From ¢t = 0 onwards a constant rate is extracted from the canal (¢ = ¢).
- m = 1. From ¢t = 0 onwards the potential in the canal is lowered at a constant
rate (¢ = ¢ :

— m = 11{2. From { = ( onwards the water is extracted from the canal at an increa-
sing rate, proportional to time (g = ct).

Table. - (see pag. 128). _ '

The formulas of these four cases are given in the upper part of the table. The
left-hand column gives @ and ¢ as functions of x and ¢; the right-hand column gives
the same quantities as functions of time at the canal border (x = 0).

In the lower part of the table the left-hand column gives the definition of the functions
Fo» 1o f2, f5 and f3; the right-hand column their values for ¥ = 0. For u = o all
functions vanish. The relationship is such that

fo=Jt =1 L=l fa=/s
where /' stands for dffdu.

The formulas show that at any distance x from the canal, however great, a slight

influence is felt, even shortly after the moment ¢ = 0. This is due to the artificial con-

ditions, elasticity and inertia of water and soil being neglected.

Figure 56, — The functional relationships are illustrated. The left-hand column gives

¢ as a.function of x at four successive moments, chosen at equal intervals, The

seécond and third column give respectively ¢ and ¢ as functions of £ at the canal (x = 0).

Figure 57. - Similar diagrams can be drawn for any value of x. As an'example ¢ is

given as a function of ¢ for m = 1/2 in four sections a, &, ¢ and d, chosen at equal

distances, where a is the canal border. Each curve shows an inflection point P which

is nearer to the origin of the codrdinate system when x is smaller. For x =0, P
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coincides with the origin, and the tangent to the curve in the origin, which is horizontal
for all curves, becomes vertical.

5:4.2 Superposed variations
Figure 58, — 1. Four examples will be given of superposition of elementary flow
. schemes. .
L. Tn the model of the preceding section @ may vary in an arbitrary way with time,
as indicated by the smooth curve in the figure. If this curve is replaced by a stepped
curve, the latter can be considered as the sum of a great numbecr of elementary systems
of the type m = 0, as indicated in the upper group of diagrams. The same line of
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Fig. 60

thought can be followed if the diagrams represent g instead of ¢ as a function of ¢, in
which case the solution can be reduced to schemes of the type m = 1/2.
Another approach is shown in the lower part of the figure, where the smooth curve
is first replaced by a polygen, and then considered as the sum of a great number of
schemes of the type m = 1 or m = 1 1/2, depending on whether variations of ¢ or g
are given. :

Figure 59. - 2. Instead of arbitrary variations, periodic changes may be studied,
which correspond to such technical problems as daily or seasonal extraction from
canals, or seasonal vartations of river levels. As an example, a series of périods of
equal length will be considered, during which alternately water is extracted from, or
supplied to the canal, at equal rates. The quantity of flow thus passing through one of
the sides of the canal is alternately + ¢, {during extraction) and — g, {during supply).
Since the calculation must start from the initial state of rest, the first period may be
one of either extraction or supply. The water movement at some distance from the
canal will approach a regime of periodic repetition, but only after a certain number of
phases. This state will be reached either from the low or the high side depending on
whether the first period was one of extraction or supply. It can be reached more rapidly
when a period of half length is assumed at the beginning, since at about the middle of
each period the water level in the canal is nearest to its average height.

Figure 60. (Upper part). - The next considerations concern the state of periodic
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Fig. 61
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repetition. In the canal, as long as water is supplied, the level rises; as soon as extrac-
tion begins it starts falling: the reaction is immediate. This is indicated in the middle
figure, where, in the diagram of ¢ in the canal, the ling a # represents the sum of all
influences before t = r,, while the shaded surface represents the influence of the ex-

. . . . , . Z
traction starting at # = ¢, Since the latter diagram is characterized by E?= — o for

t = t;, the upward trend of the ¢ line immediately changes to a downward one when
the extraction begins. i

The diagram for a point at some distance from the canal (lower part of the figure}
shows another character. Firstly the amplitudes are smaller: the waves are damped.
Secondly there is a lag in phase: the moment when the sign of d/dr changes is delayed.
The reason for the latter particularity is shown inthe figure, where theline & & represents
the sum of all influences before + = ¢, and the shaded diagram the influence of the
extraction beginning at ¢ = {. In this case the latter diagram is characterized by a
value dp/dt = O for ¢+ = #,, which means that the upward movement of the ¢ ling
does not change into a downward one until the negative value of d¢/dt in the shaded
diagram has become as great as the positive value of the line b b. (The form of the
shaded diagram has been studied in Section 5.4.1.). '

Thus a lag in phase exists, depending on the distance to the canal, similar to that
described for sine variations in the canal (Section 5.2.1), but which does not correspond
necessarily to a constant velocity. Anyhow the variatiens in'steps of ¢ at the base of this.
example are very near sinusoidal variations, and in orientating calculations the for-
" mulas of the sine functions may be taken, since they are more simple. The formulas of
this section are useful in problems of less regular variations, e.g. periods of extraction
and supply of different length. o

Figure 61. — 3. In the above examples the variations in canal level were déﬁncd_cither
in terms of @ or 4. In the following example they will be expressed in terms of both
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o and ¢. Before the moment 1 = 0 the aquifer is at rest. From ¢ = Oto f = 1, water is
" extracted from the canal, at a constant- rate, corresponding to a flow g, through the
side of the canal. From ¢ = 7, onwards the level in the canal is maintained at constant
height. The problem is to assess the quantity of flow entering through the side of the
canal afier 1 = ¢+, as a function of time.

Although the boundary condition between ¢ = 0 and ¢ = ¢, is given in terms of ¢ as

4 = Go.
it can be translated in terms of ¢ by means of the formulas of the scheme m = 1/2.
o 12 . 1 =
1 = — L a=_ kD
(1 e s 3 Ju

This continuous variation of ¢ with time can be considered the succession of an in-
finite number of infinitely small variations d¢, where the value of dyp follows from
differentiation of (1) '

- _ Qo 12

D do= — Vg

Zayn
The flow dg through the side of the canat at a time ¢, (¥, > ¢,) caused by an elementary
change in ¢ at the moment 1 (0 < ¢ < 1) is defined by the formulas of the system
m=0. '

dg= =22, - dg

v

or, after substitution of the value of do from (2)l

dg =247 1, — "2
14

Integration between the limits ¢ = 0 and £ = ¢, gives
2 . 1/t

g, = — gy arc sin Vt_o

2 tl

where g, is the flow through the side of the canal at the moment ¢,.
Considering g, and ¢, as variables, written as g and /, the formula becomes:

_2 g VE
4 = —gparcsin |/ 0
T 4
This function is represented in the figure. For 1 = t,, 3q/dt = — ov; for ¢ = 24,,
g =goj2; fort =41y, ¢ = guf3.
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4. If the aquifer, instead of extending te infinity, is bounded at the other side by a
second canat where ¢ = 0, or by an impermeable wall, where g = 0, the problem can
_ be solved by the methed indicated in Section 5.3. for sinusoidal waves. The system is
then the superposition of an infinite series of schemes, each characterized by a single
canal, where the variations of either ¢ or g are equal or opposite to those in the first
canal. Since the reasoning is the same, jt will not be repeated here.

Another scheme, not mentioned here, since it is similar to that of Seciion 5.3.3, is the
water movement in an island, created by a succession of dry and rainy seasons, each
with uniform rainfall.

5.5 SUDDEN CHANGE IN BOUNDARY CONDITION, RADJAL FLOW

Figure 62. — This section treats the same problems as Section 5.4.1, but for radial
instead of parallel flow. A well is sited in a phreatic aquifer with constant D, without
recharge, extending in all directions to infinity. The aquifer is at rest until t = 0. From
thiat moment onwards water is extracied from the well in such a way that

Q=c

where ¢ is a constant, and m a parameter.

Fig. 62
i
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The general form of the solution is very similar to that of paralle! flow. Tt reads:
1) e=rfly
(2) @ =2rkDruf(u)

where

VkD Vi

the same variable as used in the formulas of parallel flow. f'(u) stands for dfjdu
while f{z) is the solution of the differential equation
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f"+f( +2H)—4mf=0

for the conditions:

foru=c, f=0
foru=0, uf'=c¢,

where ¢, is a constant.

The proof is essentially the same as in Section 5.4.1. The differential equations are:
- The law of linear resistance:

3y @ = 2akDr Opfor

— The law of continuity:

6@ v/

é
= 2mur =
: of

(4)

When taking

1) @ = M)

substitution it {3) gives

3y @ = 2rkDt™uf”

Diflerentiating (5) with respect to r results in

90

¥

= 2nkDI™ _(f+ uf”)

Differentiating (1) with respect to ¢ gives

do m—l( 1 r)
_—=1 mf — =l
ot / 2 /

When these values are substituted in (4), the resuit can be written in terms of f
and u only

f"-l-f( + 2u) —4mf=0

f(#) must be a solution of this differential equation for the following two boundary
conditions
- Foru=c0, f=10
The value u = oo corresponds to both ¢+ = 0 and r = ¢o, while /= 0 corresponds
to ¢ = 0. The condition therefore combines the initial condition

fort =0, =0
and the boundary condition at infinite d1stance
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forr=100, @=0
-~ Foru=0, w =c¢, .
The value 11 = 0 stands with slight approximation for r = r, (where #4 is the radius
of the well). 1t is not certain beforehand whether this approximation is justified,
since the (unction f(x) shows a singularity for # = 0. The proof can be given
afterwards, when the function f(w) is determined, by showing that the valve of uf

= ¢™. Thus the condition stands for

forr=r, Q=" o
As in the problem of paratlel flow, u = 0 corresponds to 1 = oo as well, but only
a limited range of ¢ will be considered, since the drawdown must be small in com-

|
|
t
|
|
| varies little for small values of . The value uf” = ¢, corresponds to Q = 2rkDc, "
|
|
|
i
| parison with D, so as to be negligible.

Since the formulas of this section are more complicated than those for paraliel flow,
only the case m = 0 will be treated, which corresponds to extraction from the well at
a constant rate . It has already been pointed out that constant extraction in an
infinite phreatic aquifer does not give rise to a steady flow system. The formulas
below describe the nonsteady system. They are valid for a limited period of time only,
stnce the condition must be satisfied that the drawdown in the well is small compared
with the thickness of the aquifer.

The solution reads:

'Qﬂ . —v

= Ei(—v); = ,e

@ kD (—v); =0

where
L] —u 2 3 4
v v ¥
EFi(—wn= — dv=In{(p-Vv+————+—+ -~

(= o0 ™ 212 313 414

The formulas indicate that there is no radius of influence: the influence of the varia-
tion in the well is felt immediatety at any distance, in a measure which varies with time.
It vanishes at infinite distance. This result is due to the extreme assumption of in-
elastic soil and water and the absence of inertia forces. .

Artificially a radius of influence can be defined as the distance R from the well where
0 < « @, when « is an arbitrarily chosen small fraction, e.g. 5%, For this value y = 3
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12kD 9.2kD

and R* =— ¢ For o = 109,y = 2,3 and R* = t. Thus R increases with
]

4/t. There is no constant velocity as regards the propagation of the front. Hence the
term waves should preferably not be used. {Only the surface area of the circle enclosed
by the radivs R increases porportionally to #).

For small values of v, (v < v}, the series can be reduoed to its first term only. The
formulas then become -

@o
= ]n v, =
¢= "7 Q=0
The error introduced is 0,3% for v = 0,01, 5,3% forv = 0,10, 8,9% for v = 0,15
and 15.6% for v = 0,20. The approximation is valid for values of x and ¢ bound by

2
v oy
4kD ¢

i.e. within a circle whose radius increases proportionally to 4/1. The constant value of
(@ indicates that the recharge within the circle is negligible compared with the flow
entering laterally through its border. This circle extends with time because the lowering
of the water table within it decreases with time. This is another example of a flow
system where Q is constant in the vicinity of the well, which makes the relation
- between @ and r logarithmic {(see Section 2.3.1).

The logarithmic relationship is valid in particular at the well face (r = r,). Thus the
drawdown in the well is given by .

oo =201 ( TR TS )
0=
4akD  \4kD ¢

The formulas established in this section may be useful for calculating the water move-
ment created by periodic extraction from a well, aliernating with periods of rest, as
may occur in irrigation or drainage practice. When severa! wells are sited in an
aquifer, their influences can be superposed by adding the values of ¢ or q. The
extraction from the wells need not begin simultaneously. The aquifer may extend to
infinity in all directions, or be limited by parallel canals, or by a canal and an imper-

meable wall. The way to handle these problems has been indicated in Sections 2.3.4
and 2.3.5.
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6. TWO-FLUID SYSTEMS OF FRESH AND SALT WATER

6.1 FUNDAMENTALS

6.1.1 meroduction

In coastal regions, water infilirating from rain or irrigation flows off underground
towards the sea. This groundwater flow does not cover the total thickness of the -
aquifer, because the sea water, due to its greater specific weight, intrudes laterally into
the lower part of the permeable strata. The slight difference of two to three percent in
specific weight suffices to change entirely the characteristics of the flow pattern from
those of a one-fluid system. Two distinct bodies of fresh and salt water form, one
floating freely on the other.

Between the two bodies a transition layer of brackish water develops. The mechanism
of its formation will be discussed later, as well as the reason why its thickness remains
reduced (see Section 6.4). This layer is often thin compared with both the fresh and the
salt water layer; its thickness may then be neglected, and a sharp interface assumed,
This will be the assumption throughout this chapter. Because of its great technical
importance, however, the behaviour of the transition layer under the influence of
extraction from a well or gallery will be studied in Section 6.4,

Figure 63. ~ In steady flow, different cases may be distinguished, as indicated (all in a
phreatic aquifer as an example).

Fig. a shows a cross-section of an island. The salt water is at rest since the sea level all
around the island is the same. The fresh water body is not thick enough to reach the.
bottom of the aquifer; thus it is in contact with the salt water over the whole area.
Fig. b shows the same¢ cross-section for a thicker water lens, resting on the imper-
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Fig. 63

meable base of the aquifer. An interface then exists only along the coast.

Fig. c. The same sitvation exists at the coast of a mainland, where at some distance
from the shoreline the interface encounters the base of the aquifer.

Fig. d represents a cross-section of a strip of Jand, bounded at both sides by salt water
of the same density, but at different levels. This situation is rare in nature but fs casy
to realize in a laboratory. Unlike the othcr examples, here not only the fresh water
moves, but also the satt water.

Two-fluid systems may be steady or unsteady. Unsteady ﬂow occurs on the one hand
when one or more of the quantities determining the flow system vary with time, as in
the case of tidal movement of the sea, variations of river levels, seasonal rainfall or
petiodic extraction from wells; and on the other hand when these quantities, although
constant from a certain mement onwards, do not correspond to the form of the inter-
face or the phreatic level at the initial moment. Then a gradual adaptation of the form
of these surfaces leads, after theoretically infinite time, to a steady flow pattern,

The time needed for the adaptation of the interface is in gencral much longer than
that of the phreatic water surface in a one-fluid system: it may cover tens or even
hundreds of years. Unsteady flow is therefore the rule, rather than the exception in
two-fluid systems. Tn coastal regions all over the world, where in the last century
works have been executed for water extraction, irrigation or drainage, the flow is
generally unsteady. Conversely, looking into the future, all technical projects should
be studied from the viewpoint of an intervention creating long-lasting unsteady flow.
Although steady flow is thus of less importance than unsteady, it will be studied first
for didaciic reasons,
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6.1.2 Water resources

The question of the yield is more complicated for two-fluid systems than for one-fluid
systems. The discussion, therefore, will be limited to an elementary model, that of an
island, where the fresh water body is in contact with the salt water over the whole
area, Thus two-fluid systems, as exist along the coasts of mainlands, are not considered.
The question of the yield involves several problems, to be dealt with in this chapter.
- In Section 6.2.5. considerations on the yield are given by comparing different steady-
state systems. The theoretical maximum extraction rate, equal to the recharge of the
island, is obtained when the extraction takes place all along the coast. But such
exploitation is usually avoided for fear of extracting water from the transition zone,
which is here at shallow depth.

— In Section 6.2.8, the possibility is discussed of increasing the fresh water extraction
from the centre of the istand in steady flow conditions, by simultaneously extracting
salt water to be disposed of to the sea. A theoretical solution is given, mainly for
didactic purposes, since it will generally be uneconomic or technically unfeasible.

-~ Nonsteady low conditions, as described in Section 6.3 are of particular importance
for short-term exploitation, since the movement of the interface is slow. For a {imited
petiod high extraction rates can be realised, but these cannot be matntained in the long
run, Since the quantities of water reteased by a rise of the interface are important, they
. also play a role in long-term exploitation, '

— The storage capacity of the lens plays a role when the recharge or the extraction
rate varies periodically. This problem is examined in Section 6.3.5. (or varying re-
charge of a phreatic aquifer.

— The transition layer greatly hampers the extraction of fresh water. Tt is usually
unavoidable that some water from the upper part of the transition layer is extracted
along with the fresh water, Iis density is scarcely higher than that of fresh water, so
that it moves upwards almost as easily. Its salinity.increases with the quantity extract-
ed. Even.small rates may make the extracted mixturc unfit for consumption or irri-
gation. The problem is explained in Section 6.4.2., while Section 6.4.3. deals with the
principle of extracting fresh and brackish water separately, and transporting the
brackish water to the sea. . )

6.1.3 The law of discontinuity at the interface

Figure 64. - The interface constitutes a discontinuity for the potential as well as for the
velacity. The law of discontinuity can be written either in terms of potential (Formala
1) or of velocity (Formula 2), as will be shown. In the figure, f represents the interface,
R an arbitrarily chosen reference level, A and B two adjacent points sited at either side
of the interface. In its first form the law of discontinuity relates the potentials ¢ and ¢
at these points:
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N e—e'=—0"—-nZ
Often sea level is chosen as a reference level. Then Z is negative, and since p* > v,
@ > Q"

By definitien of the potential at points A and B

I

} p=p+vZ, @' =p+yZ

| Tn both expressions p is the same, since the pressure is continuous at the interface.
P 4

| Elimination of p gives (1).

If piezometers are installed at A and B, and filled with fresh and salt water respect-
ively, their hydraulic heads are '

he=? and " = f:
¥ ¥
related by
h—-2 v
-2z v
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Since ¥” > y, h — Z > k" — Z, which means that the water level rises higher in the
. fresh than in the salt water tube.

| The common pressure p at A and B can be expressed ecither as y (# — Z) or as
| ¥" (" — Z). Thus
| yE ==y —2)=p.

Figure 65. - In its second form the law of discontinuity is written in terms of velocities,
The velocity component perpendicular to the interface is continuous:

N

since the quantity 51— = i:;?— represents the velocity of displacement of the interface
(where m is the effective pore space). In the case of steady flow the interface does not
move: .
# = u" =10
The velocity components parallel to the interface are related by
' z .
i) vV =kt =DT k(G = psing
s
when isotropic soil is as'sumc-d, and
At s aZ L
(20) v—=v'=k(y —?}a—=k(v —-Nigu
X

in the hypothesis of anisotropic soil with infinitely high permeability for verucal flow,
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For isotropic soil, according to the law of linear resistance:

v = —ka_(pandv”= - a_(f_
ds ds
where 5 is the length codrdinate along the interface. Partial derivatives are written
since with nonsteady flow ¢ and " may be functions of both s and . The permea-
bility is the same in fresh and salt water, if the slight difference in viscosity between
the two fluids is neglected. (see Section 1.1.1.), Thus

f o e -9
ds

Ll

According to (1)

Differentiating with respect to s:

Ho" — @) . W
3 (y

which, upon substitution in the formula for v — ", gives formula (2).
For anisotropic soil the proof is similar, The law of linear resistance reads:

v=—k-2; v”=—kafo

ox ox

oz " ]
—-y)—=0G"—y)sina
as .

while (1), upon differentiation with respect to x, gives

He" — @) _

” &z .,
- = —_ !
= " =y o G'—-Miga

I
|
|
I|
|
I
|
I
I
I
I
I S @ —e=0"-1Z.
I
|
I
I
|
I
|
|
I
|
I
I
I

From Equation (2) it can be concluded that if two fluids of different densities arein
contact with each other along a sloping interface, they cannot both be at rest.

| Ifa # oand y” # 7, the right-hand side of (2) is different from zero and therefore
| vand ¢ cannot both be zero.

The term ‘dynamic equilibrium’ is sometimes used for steady flow with sloping inter-
face: the term ‘equilibrium’ indicating the steady position of the interface; the term
‘dynamic’ the movement of at least one of the fluids. It is, however, recommended to
speak simply of steady flow.
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Fig. 66

Fig. &7 X

Figure 66. — In Formula (2} v and v" may have different signs, To illustrate the varicty
of possibilities, some examples are given in the figure, where schematically the quantity
k{(y".— ¥) sin a has been given the positive value of 10;

v— v =10

1t should be kept in mind that the law of discontinuity, eithet in form (1) or (2), is
valid for nonsteady as well as for steady flow, this contrary to the laws of Section
6.2.3, which are restricted to steady flow with salt water at rest.

6.2 STEADY FLOW

6.2.1 Differential equations
Figure 67. — The general problem of steady flow involves the flow of hoth the salt and
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the fresh water. The variables are related by five differential equations: the laws
of linear resistance and continuity in both the fresh and the salt water bodies, and the
law of discontinuity at the intetface. These equations can be formulated as follows:
— The law of linear resistance in the fresh water:

0 g=-® g =—%¥

ox ’ oy
— The law of linear resistance in the salt water:

@ @--w2 g
dx ay

— The law of continuity in the fresh water:

dx  dy

[

’ k
with in a phreatic aquifer ¥ = »; in a partly confined aquifer &N = n =7 (¢ — @),

with ¢’ constant in case of steady flow; and in a confined aquifer & = 0.
— The law of continuity in the salt water:

(4) %'-F % =0
ox dy

- The law of discontinuity at the interface.

3 o=—o"=—={—1Z

To these differential equations the following auxiliary relations must be added, where
the reference level is assumed at the base of the aquifer.
- For a phreatic aquifer-

D=1, D=h—z=f§—z

or, if as an approximation the total thickness of the fresh and salt water body is
considered as a constant

D=Z, D=Dn-2
— For a confined or partly confined aquifer
D=2, D=D -2

In the following sections it will be assumed thatq
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— In a phreatic aquifer » is given as a function of x and y, independent of ¢,

— In a partly confined aquifer either ¢’ or 7 is given as a function of x and p.
Under these conditions there are five unknown variables: @, ©", ¢ (g, and g,), g~
(g; and g;) and Z. Related to these by the auxiliary conditions are Dand D7, and in
the case of a phreatic aquifer A The five unknowns are defined by the five differential
equations and the boundary conditions. a

If the salt water is at rest, 9" is a given constant, and g, = g} = 0. Thus the number
- of unknowns reduces to three: ¢, (g, and g,} and Z. The number of differential
equations reduces also to three, since the laws of linear resisiance and of continuity in
salt water disappear.

$£.2.2 Boundary conditions
In a-two-fluid system the boundary conditions are doubled with respect to one-fluid
systems (see Section 1,3.3.). As an example a well may be assumed from which fresh
water is extracted at a rate Qp. The double condition then reads:

Q=0 Q=0

. The second condition might easily be forgotten il one is merely thinking of the
extraction of fresh water. Yet it establishes a condition, since, physically, extraction
of both fresh and salt water is possible by placing in an uncased well two pumps whose
orifices are respectively above and below the interface.

When water is extracted from a gallery, the same boundary conditions are valid

g=ga g9 =0
where g and g” are the extraction rates per unit length of the gallery.
Figure 68. — In neatly all problems the boundary condition along the coast plays a
role. The upper part represents the two alternatives: a phreatic aquifer or an aquiler
with a covering layer (partly confined or confined). The fresh water layer always ends
in a point. A vertical contact plane between fresh and salt water, as indicated in the
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right part of the figure is not possible, as the pressure gradient 8p/dz would be differ-
ent at either side of the plane (y in the fresh water and y” in the salt water), whereas the
pressure is continuous at the contact between fresh and salt water.

The double beundary condition is

P =9y Z=1,

where ¢y is the potential of the sea. If the aquifer is phreatic with reference level at sea
level,

Q‘J=§0”=Z=O

Near the coast the gradients of both # and Z tend to infinity, as shown in the figure,
The same is true for the gradient of the fresh water potential.

The law of linear resistance in the fresh water

!
I g=-—kb_~
| 3x
Co . . h .
l indicates that | a_qo | — oo for D — 0. In a phreatic aquifer | 0_ | — 00, since fi = E_
| ax| | & | ¥

The law of discontinuity at the interface

M L az
v=v =k(y —y)—
ox

N

indicates that

|
I
|
} 16 |l—>oofor|v[—>ooandv”ﬁnile.

[t ]

X

It is clear that near the coast, where the fresh-water velocities increase infinitely, a
detailed study is required to establish whether the scheme is approximately representa-
tive of a physical low system. This point is mentioned here, but will not be examined
{see Section 3.2). '

6.2.3 Basic laws for salt water at rvest
If the fresh water is at rest, the level of the impermeable base is immaterial, provided
the fresh water lense is in contact with the salt water over the whole area. If the fresh-
water body is in contact with the impermeable base there is at least an interface in the
vicinity of the coast. The relationships established below are valid for any aquifer or
part of an aquifer where the fresh-water body is in contact with salt water at rest.
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Distinction should be made between a phreatic aquifer on the one hand and a confined
or a partly confined aquifer on the other. In both cases the reference level can be
chosen at such an elevation that the thickness D of the fresh-water body is propor-
tional to the fresh-water potential ¢, which makes comparison with Chapter 3 possible,
and allows for superposition. In this section the laws of proportionality will be studied
first, then the comparison with Chapter 3 and the possibility of superposition will be
examined,

Fig. 69

Figure 69. — If the aquifer is phreatic, the reference level is placed preferably atsea
level. This makes k" = 0 and therefore ¢ = 9", &" == 0; h becomes the elevation of
the water surface above sea level and Z (negative) the depth of the interface below sea
level.
Under this assumption the three quantities determining the shape of the fresh-water
bedy, b, Z and D (where D = h — Z) are proportional to ¢ according to

=% _z=- p=h-z=_2Y %

¥ Y =7 -y

The relationship h = %, in combination with the law of discontinuity at the inter-

p—¢" =-0G"—-nZ

l
I
| face
I
| gives for ¢" = 0 the indicated expréssions for Z and D.

It fellows from the above relationships that — Z is proportional to 4 according to
—z=1_n

Y-
This is the well known law of Badon Ghijben-Herzberg. It states that the water
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‘Fig. 70

surface W and the interface I are similar curves: the latter can be obtained from the
former by multiplying the figure with a factor — p/{(y" — ) with respect to the sea
level R, This factor is — 40 when the density of the salt water is 1.025. In other words,
for every metre the water surface rises above the sea level, the interface is 40 m below it.
This law is valid for steady flow with salt water at rest. Enormous mistakes have been
made by engineers who have drawn practical conclusions from it, applying it to
nonsteady flow. Their idea was that the interface would suddenly rise by 40 m when
the water surface is lowered by one meter, for instance due to pumping a well. Actually
this rise does take place, but over a period of tens or hundreds of years. During this
long period of nonsteady flow the above mentioned law is not valid,

Figure 70. - If the aquifer is confined or partly confined, a similar proportnonallly
between L and ¢ exists:

D= p/y" —y)
if the reference level is chosen at a distance b above the top of the aquifer, where
b= (y'ly)a
Under these conditions
==Y -pa w=-TT"1,
Y ¥

In the figure a, b and D denote absolute values, whereas Z and B are algebraic quanti-
ties, here both negative. SL indicates sea level; RL reference level.

| In the expression
P (DD=—-Z—-b
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Z is defined by
2 e—9"'=—-0"-1Z
while ¢” depends on A" by
G ¢" = yh |
Finally the following geometric relation exists:
4) a=b+ 4+
Eliminating Z, ¢" and 7" gives
=D =N+ G"a—yb)
If the last term in brackets equals zero, D is proportional to ¢ according to

D=

|
I
l
|
l
|
l
l
i.
|
l

It follows from the above that in a steady two-fluid system with salt water at rest,
the reference level can always be chosen in such a way that ¢ is proportional to D.
In a phreatic aquifer:

?pr . Putting this term equal to zero gives b = % a.

]
1

p_ Y ¢

Y-y

n a confined or partly confined aquifer:

p=_" ¢

Y=y
This makes comparison possible with a steady one-fluid system in a phreatic aquifer

with variable D, where the reference level coincides with th; bottom of the aquifer.
Then '

D=y

The only difference is a Factor y"/(y” — y) in the case of a phreatic aquifer, or a factor
v/(y" - ¥} in the case of a confined or partly confined aquifer.

In Section 3.1 it was shown that the formulas for constant 2 could be changed into
those for variable D by replacing Dg with @2%/2y. This theorem can be extended to
two-fluid systems. It then reads: the formulas for ¢ and ¢ are identical when the follow-
ing quantities are interchanged: (1) D¢ for one-fluid systems with constant D, (2) ¢*/2y

for one-fluid systems with variable D, (3) —————
ST 29y - y)

for two-fluid systems in confined or partly confined aquifers.

for two-fluid systems in phreatic

@?
aquifers, (4) T
¥ =7

This theorem is subject to the assumptions already made: steady flow, salt water at
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rest in the two-fluid system, given n, reference level as indicated for each case sepa-
rately. The flow nets formed by stream lines and equipotential lines remain unchanged
when in each system the equipotential lines are drawn at equal increments of the
respective interchangeable quantity. Examples will be given in the following sections.

The essential point of the proofis in the law of linear resistance, which for a one-
fluid system with variable D reads (in the x direction)

q=—kp%® dp _ aq;
ax 2? A
and for a two-fluid system in a phreatic aguifer
L " )
g=— % _F ¥V ® -

ox v —y ox
The second equation can be derived from the first by replacing
2 w2
9 with 19

l
|
|
I
I
I
I
|
|
|
|
i y 20 -7
The principle of superposition is valid in the four cases alike, when the values of » and
4 (g and g,) are added in each instance, those of ¢ in the one-fluid systems with
constant D, and those of ¢? in the three other instances. The proof of this thesis for
two-fluid systems is similar to that of Chapter 3; the constant factor does not play a
role in the proof. Once the values of @ are known from superposition, those of D, f,
and Z can be obtained from the given rélationships.

6.2.4 Parailelf flow; salr water at rest

Figure Tl. - The left part represents a cross-section of a long land strip, bordered
by two parallel vertical boundaries, and containing a phreatic aquifer. The sea level
at both sides is the same (A" = 0). The aquifer receives a uniform recharge .

Under these conditions 4 fresh-water body forms, as indicated in- the figure, through
which the fresh water received from recharge flows off to the sea at both sides. The
salt water underneath is at rest. The formulas are:

(Pl = }'(‘P ? '}’) ?1 (I )

()
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Paty P=0

RO il Pl - x)

7

2=t Zxg-w
YO =) k

pP=_1  Plu_x
Yy =y k

In the middle section, where # and — Z attain their maximum values:

P'=10"—7

¥ m

o Yo7 nt?
7w 4k
a7 nl?
"o
p? =- 1 B f‘_f
YO — ) 4k

These formulas can be derived from those of Section 3.3 (see bottom figure). The
formulas of that section, for System TI, were

|
I
i 2 =Tx (1 - ‘"(l_)
! QO “E I S '2’ -
l
I

Replacing 2 by ”y @* gives:
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2 _YWy" —pn (1 )
pt="0  — Cx{{ —x) = - x.
¥ k ( s 4 le2

From the expression for ¢, those for #, — Z and D can be derived with the re-
lationships given in the same section. ' '
The formulas may also be established directly from the differential equations.
These are:

- The law of linear resistance in fresh water -

|

|

|

|

|

l

1

l

I do
g=kD_"_

I _ dx

| — The law of continuity in the fresh water

|

|

| dx

| — The law of discontinuity at the interface

[ @ — "= — (¥ — y}Z, where " =0

| The following auxiliary conditions should be added:

| h = ofyy; D=~h—2

| These five equations define ¢, ¢, Z, # and D for the boundary conditions

|

J

-

forx =0 o =0
forx =10 qg="4nl

From a physical point of view the results may be analysed as follows. The fresh-water
body forms a lens, floating freely on the undetlying salt water. In the middle section
g = 0 for reasons of symmetry. In this section the interface is horizontal, since both g
and g” {and therefore v and v") are zero. From the middle section towards both left
and right, | ¢ | increases as a consequence of the received recharge . Since moreover
the section D decreases, | v | increases, which corresponds to an increasing slope of
both the water surface and the interface. At the coast the section reduces to zero,
and | v | tends to infinity. The slopes of both the surface and the interface tend to
infinity (see Section 6.2.2). '

6.2.5 Exiraction from canals
In this secticn seme remarks will be made on the vield of an aquifer’in steady-state
conditions, exploited by canals or galleries. Similar considerations on the extractions
from wells will be given in the next section. A sharp interface is assumed, whlch is too
favourable an assumption, as will-be shown in Section 6.4.
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Fig. 72

Figure 72. - The situation te be examined first is the same as in the previous section,
but with the addition of a canal in the middle section from which water is extracted at
“a uniform rate gy per unit length. The lower part shows the corresponding situation
of a phreatic aquifer under onc-fluid conditions. The formulas of the latier scheme
have been established in Section 3.3. Upon application of the transformation de-
scribed in Section 6.2.3. they become (for the left half of the figure, and ¢, = ¢, = 0.

¢z=?(}’ "_}') _}_t_x(f—x)—@x
¥ k k
__q_n(l_x)_]q
) 2 2°

where A, — Z and D are related to ¢ according to

L

h=? _z=_% »p 14
S T

- # = " (p
Y-y =7
In the canal, for x = ff2:

: 1 1) (ff_f _ ggj)

LR VPR
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Fig. 73

yr__ ¥ (_f - @_o’)
Y - \dk 2%

Figure 73. - The greater the exiraction rate g, the lower the level in the canal, and the
higher the interface under the canal. The theoretical maximum for the extraction rale
is reached when the interface rises to the water surface in the ¢anal:

h=p=0, —Z=0; go,=nlf2

The extraction is then one half of the recharge of the whole island.
The fresh-water lens is now cut into two halves. Each has a symmetrical form, since
at both sides the following boundary conditions are valid:

p=0, h=0, " =0, =0

Each half may be compared with the lens described in the previous seclion. Since the
breadth /is reduced te /2, all dimensions reduce to one half, and the volume to one
quarter, as can be seen from the formulas of Section 6.2.4.

As a conclusion, by exploiting a canal in the middle, no more than one half of the
recharge can be extracted, which reduces the fresh water volume to one half of its
original size.

This is the result as to the final steady state flow. For the exploitation the preceding
non-steady period must also be considered. This period will net be studied in detail;
the following remarks will merely be made. Tf the exploitation during the transition
period is performed with the water level in the canal constantly at sea level, the ex-
traction rate decreases gradually, and reaches the value g, when the steady state is
approached. Under these conditions the extracted quantity is greater than if the
exploitation had taken place at a rate g from the beginning, in which case the water
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Fig. 74

level in the canal would have fallen graduaily, the final steady state being the same,
In both ways of exploitation the fresh-water volume under the island would reduce by
one half of its initial value. In the first case a part of this water would be extracted,
whereas in the second all of it would be lost to the sea. It is clear that in principle still
more water can be extracted by lowering the water level in the canal below sea level
during the first stage of exploitation. The modalities of such an exploitation, however,
would have to be studied in detail.

Figure 74. - Instead of one canal in the middle of the island two parallel canals in
symmetrical arrangement may be assumed, each extracting g,/2 per unit length, so
that the total yield is the same as in the last scheme. The theoretical maximum ex-
traction rate in the final state is obtained when interface and water surface touch m the
canals at sea level. The extraction rate from both canals together, defined in this way,
can be established as a function of the distance between the canals, Since the canals
receive the full recharge of the zone between the canals, and one half of the recharge
of the outer zones, the extraction rate is:

e+

= n
fo >

If a increases from zero (one canal in the middle) to ! {two canals near the coast), ¢,
increases from ulf2 to #

As a conclusion, if the extraction takes place with one¢ canal in the middle, the maxi-
mum vield is one half of the recharge of the island, and the final volume of the fresh-
water lens is one half of the initial volumne. If, instead, the extraction is performed by
two canals near the coast lines, the yield is twice as great, equal to the full recharge of
the island, and the final volume of the fresh-water lens is the same as in the beginning.
The final state is then almost immediately reached. There is therefore a theoretical
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Fig. 75

advantage in placing the canals as near to the coast as possible, but this solution is
seldom chosen for fear of extracting brackish water from the transition layer. This
point will be discussed in Section 6.4.

6.2.6 A well near the coast
Figure 75. — The upper part shows a'parallel flow medel, representing a strip of land
or an clongate island. The phreatic aquifer receives a uniform recharge n. The sea
level at both sides is the same, equal to reference level (¢" = 4" = 0). A single well P
with extraction rate @, is sited at short distance & from the coast (g < #2). The
discussion will be limited to a narrow strip along the coast (x <Jf2), where the
fresh-water flow is approximately constant.
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g= —nlf2

The formulas for ¢ and g are those of Section 3.4 but with application of the trans-
formation as described in Section 6.2.3.:

z=(r”—y)r(n_IgC_ggInr_z_)=(r"—?)?A-

@
y” k Tk r, ¥
= V7o 1 aipre Y
¥y AV vy =)
= -— ﬂ el.(el +az}-ﬂ—n_i
r,r: 2-. .
In the well
@f = 0= (n! o 1y E)
Ky 4 ro

1t is clear that for physical reasons ¢* must be positive at all points of the aguiler, in
particular in the well, where the water level is lowest and the interface highest. The
theoretical maximum rate of extraction from the well is therefore given by

Po=he=2,=0

which, according to the given formula, corresponds to

mhla
=7, (2ajry)

The dotted line, separating the parts of the aquifer whose water flows towards the

canal and the well, does not reach the canal. The two other situations ¢xamined in

Section 2.4.4 do not apply here, since they require potentials in the well lower than

in the sea.

In reality the extraction rate must be lower, firstly to allow for a safety margin, bur
principally because of the upconing of the transition layer, as will be explained in

Section 6.4.2. Tt can be deduced from the given formula that the maximum value of

0, increases when & increases and rg remains the same (not shown here).

6.2.7 Partly confined aquifer
Figure 76 shows a cross-section of a parallel low model with a partly confined aquifer,
On the right-hand side the model is bounded by a impermeable wall, which may also
be considered a symmetry axis, in which case the figure would represent only one half
of the model. Between A and B the aquifer receives a uniform recharge 7. The down-
ward flow through the top layer causes a uniform loss of potential in vertical direction,
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Fig. 76

so that the ¢’ line in that part of the model is parallel to the ¢ line. To the left of B
the aquifer extends to infinity; it is covered by the sea.

The part AB may represent a dune series, and the part to the left of B a shallow sea.
If beyond point C, where no flow occurs, the top layer were entirely eroded by the sea,
this would have no effect on the flow system. The water received by the aquifer over
the part AB flows off to the sea, but finds its upward movement hampered by the top
layer. As shown in the figure, a ‘tongue’ forms, thus facilitating the upward flow
through the top laycr by increasing the area. At the extrcmlty C the interface en-
counters the top layer at a small angle, not zero.

The situation as sketched might raise doubts as to the stability of the sea water above
the fresh water contained in the top layer. This question will not be analysed here
from a theoretical point of view, It suffices to mention that the existence of tongues, as
drawn, has been proved both in a laboratory model and in nature. In the latter case
borings have shown that the thickness of the fresh-water body docs not tend to zero
near the coast line, while water has been pumped from a well drilled in the sea somne
distance off the coast. '

Figure 77. - The reference level has been chosen so that P2 is proportional to ¢, which
implies (see Section 6.2.3). :
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Fig. 77

Tty T

Z=—D-b=-D-1a

Y.
" R Y

p=@G"-pD; ¢" = —;(? -ya

In these formulas Z and k" are algebraic quantities (both negative), whereas a, b, Dand

D' are absolute values.

For the part CD (the “tongue’) the solution reads:

ke VE
p=0"-pD
Tk D K
Lt mo [TEELE
1=k -ND s oot %

At the extremity C, the angle of encounter between the interface and the toplayeris
defined by dD/dx for x = 0, or \/k’fk, a small angle, since k' is small compared with k.

The solution depends on the following equations:
— The law of linear resistance

l

|

|

[(nq=k9@£

i dx

| — The law of continuity

I : | :
dg k

P2 —= -9 T

l( " Diw ®
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where @' is the fresh-water potential just below the top of the layer with low

permeability.

~ The law of discontinuity at the top of the layer with low-permeability.
P —e'=——N(—b+ D)

or, after expressing ¢” and 4 in q,

(B} o' =—0G"—nD

where a cancels cut.

— The law of discontinuity at the interface
p—¢'=—0"—12

which, as a result of the choice of the reference level, reduces to

(4) p=(y"— 9D

~ Eliminating g, ¢ and ¢’ from (1), {2), (3} and (4)

" d%(DY)
dx?

where 4 = 2k'}kD' and B = 2k'fk

=AD + B

Multiplying both sides by D and integrating term after term

dx
@ _ \/fl)g’-|~fﬂz+cl
dx 3 2
where ¢, is an integration constant. Multiplying by k(3" — ¥):

! B
g =kG" —p) —3—Da+592+c|

The integration constant is found from the condition

forD=0 g==20
which makes ¢, = 0 and

A B
q=k(?”—v)D\/—D+—
3 2

.Integrating the last equation by separating the variables,

A B '
D=—_(x+c 2+\f— X+
12( 2) 2( 1)
The integration constant ¢, is determined by
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forx=0 - b=10

|
| which gives
|. e
12\/3
¢, =00rc, = — —
I : : AN2
|
|

Only the first value has a physical meaning, since the other makes dD/dx negative
forx =0

The formulas of part AB read: -

D=2 x4+ l-¥) 40
Ky —y)
where ¢ is an integration constant,
o = (¢ —D

!
q=n(x,+5—x)

The basic equations are:
— The law of linear resistance

= kD_I
1 dx

— The law of continuity

|

|

|

|

|

|

| !
I q=n(x.+§—x)
|

|

|

-~ The law of discontinuity at the interface
¢=0"—7D. .
Eliminating ¢ and g from these three equations yields the formula for D,

The values of x, and ¢ depend.on both parts AB and BC, Since in section B, separating
these parts, ¢ is known te be nlf2, the formulas of part BC define the values of x,
(x,), and D, (D)), in that section. The resuli cannot be given explicitly, since a third
degree equation in D is involved. When D, and x, are known, substitution into the lor-
mula for D of part AB yields the value of ¢.
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Fig. 78

6.2.8 Flowing salt water

Steady-state systeh‘ts with flowing salt water are rare in nature. They presupposc
cither two different sea levels or salt water cxtraction. Whereas different sea levels
seldom occur, salt water flow may exist under a dune series bounded by fields that are
drained below sea level. This case will be examined in the first éxample. In the second,
salt water extraction will be studied with a view to increasing the long-term extraction
of fresh water from the lens under an island.

The differential equations of steady flow with moving salt water are non-linear. Even
the simplest schemes of parallel flow pose difficult mathematical problems. Indeed, no
scheme was found that could serve as an example for exact solution. The analysis of
both schemes therefore will he qualitative only. Since it is extremely hard to draw
conclusions from differential cquations, the reasening is not fully exact, but contains
some assumptions which will most probably be confirmed by further investigaiion.
The proof, however, remains to be given. For the first example the differential equa-
tions will be given, but not solved.

Different sea levels .
Figure 78. ~ The scheme indicated in the lower part can best be derived from a sym-
metrical system with salt water at rest, as represented in the upper part of the figure.
The latter system corresponds to parallel flow in a phreatic aquifer, bounded at both
sides by the sea at the same level and receiving a uniform recharge n. This system was
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examined in Section 6.2.4. The lower scheme, also in steady fow conditions, differs
from the previous one only in that the sea level on the right is raised by a small height
a, and the level on the left lowered by as much. If a is relatively small, the lower part
of the figure will resemble the upper part, and conclusions can be drawn with some
probability from a comparison of the schemes. o _

For reasons of symmetry it is probable that the heights of the points A and B will be
about the same as in the upper part of the figure, while the surface as well as the inter-
face at these points will most probably be inclined towards the left. If these assump-
tions are correct, it follows that the highest point C of the surface will be at the right-
hand side of the middle section, and the lowest point D of the interface at the lefi-hand
side, as indicated in the figure.

In sectien C the fresh water separates into a ﬂow to the leftand a flow to the right. In
the section itself v = 0, whereas v" # 0, directed to the left. According to the law of
discontinuity at the interface, written in terms of velocities, this difference between
v and ¥" corresponds to an interface, sloping to the left as indicated in the figure. In
section D the interface is horizontal, which corresponds to v = v’ ,both directed
towards the left.

The differential equations and the boundary conditions of this system will be establish-
ed below, to show how the problem can be posed mathematically, but the solution
will not be attempted. The differential equations arc:

— The law of linear resistance in the fresh water

O q¢=kp%
dx

- The same in the salt water

’ » dg”
2 = kD"
@ 9 In
— The law of continuity in the fresh water

da__,
dx

Or 1pon integration
) g=go—nx

where ¢, is the (unknown} value of g in the scctlon where x = 0,
— The same in the salt water

4 " =gqg

164



| - Fig.79

=

where g, is the unknown constant flow-in the salt water
- The law of discontinuity at the interface

(3} p—9'=—-0"—7Z
To these equations niust be added the following auxiliary relations

D=z

p=h-2z=2_72
oy

The five differential equations relate the five variables @, ¢”, g, " and Z to x, when
the auxiliary relations ar¢ used to eliminate D and D",

The boundary conditions are

Forx =0 @ = yhy

Forx =10 Q" =y'h

Far x =/ @ = YA,

Forx ={ " = y'hy

Extraction of salt water .
Figure 79. — The upper part represents the schéme examined in Section 6.2.5, charac-
terized by: ’ . ) :
- Steady paratlel flow in a phreatic aquifer, bounded at either side by salt water.
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- At both sides the same salt water lpvcl, which corresponds to reference level
(=0 =0)

- Uniform recharge n.

— Extraction g = #/{2 from a gallery in the middle of the 1sland

This scheme corresponds to the theoretical maximum extraction of frest water from
the aquifer: surface and interface touch at sea level in the middle of the island. The
~ aquifer is divided into twe halves, The highest points H of the surface are /2 apart.
One half of the island’s recharge is received between these two points, and drained to
the gallery; the other half, received oatside the points, is lost to the sea,

In principle, if the assumptions 10 be made are correct, the same drain can produce
more fresh water if salt water is simultaneously extracted from the middle section.
Such extraction must be done by means of wells, but to explain the principle a gallery
is assumed. The lower part of the figure shows the steady flow system that results from
a slight extraction of salt water. This system differs little from the first one, and can be
compared with it. Fresh water is extracted at such a rate that surface and mterface
touch in the middle section, as they did in the first system. .

The fresh-water lens at the right-hand side is in the same position as that between
different sea levels, studied before. On the basis of the assumptions made there, it
would follow that the tops H of the surface are farther apart than.in the upper figure,
which means that the fresh-water gallery extracts more than one half of the island’s
recharge : .
It should be kept in mind that this reasoning is given to show the. principle. For
appllcatlon practical and economical factors must be considered. From a hydrauhc
point of view,.the following remarks should be added:

— When surface and.interface touch, the extreme theoretical limit is reached; in a
design a safety margin should be introduced.

— A sharp interface has been assumed, whereas in reality the brackish water of the
transition layer may play a predominant role.

~ The effect of the salt water extraction depends on the transmissivity of the lower part
of the aquifer. The impermeable bottom should not be too deep, or the lower part of
the aquifer too permeable, <

— Theeffect of a series of wells cxtractmg salt water is less umform and therefore less
favourable from an exploitation point of view, than the effect of a gallery.

Since some of these remarks are of greal wéight, it is clear that the method has been
discussed for didactic reasons rather than with a view to practical application. The
system might be studied in some cases in combination with the prmclp]e set out in
Section 6.4.3, :
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6.3 NON-STEADY FLOW

6.3.1 Differential equations and boundary conditions )
Figure 80. - The flow system is defined by the followmg differential equatlons.

— The law of linear resistance in the fresh-water layer

M g= —kna"’ g = ¥

ax’ ! oy’

g

RL
Wmﬁ
e

Fig. 80

— The law of linear resistance in the salt-water fayer

a(Pﬂ' a(Pﬂ
2 := _ an__; " — - kDﬂ_
2) ¢ ™ d, %

~ The law of continuity in the fresh-water layer ' _

%4 aqy =N+ m g
éx 3_1 - ot

(3)
where mi is the effective porosity of the soil. Tn the case of
a. a phreatic aquifer

N=n—E§E . . .
v ot . L .
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L S

L . .oom .
(In the chapters on one-luid systems the quantity — has been written as )
: ” .

b. a partly confined aquifer

where m” is the cﬂ‘ecuve porosnty of the top layer
¢. a4 confined aqunfer

N = 0
- The law of contmmty 1s the salt-water layer

@ a7 oay _ _ m%

: 6xl dy BI .
- The law of discontinunty at the interface.
(5) (P—rp”=-(? - NZ
These five differential equatlons relate ¢, 9", ¢ (g, and g,), q” (g, and g,)and Z to x,
yand ¢, if the quantity N is defined as above and the sections of flow are determined by
the following auxiliary relations. These will be written under the assumption that the
 reference level coincides with the bottom of the aquifer.:
In a-phreatic aquifer K

b=z
h=oly o
p=h-pr=2_z
. y
Ina conﬁnec} or partly confined aquifer
=Z.

D D D"—D—Z

In problems concerning phreatic aqunfcrs n will be given as a function of x, yand i,
independent of @. In prablems concerning partly confined aquifers, depending on the
problem; either ip" or n will be given as a function of x, y and {, independent of ¢.
' In addition, initial and boundary conditions are required to define individual flow
"systéms. Both afe doubled in number in comparison with a one-fluid system. As an
initial condition may be given: the form of both the phreatic surface and the interface
‘at the moment ¢ = 0, or ¢ and ¢" as functions of x and y at that moment, or any
- equiyalent pair of conditions. The boundary conditions are similar to those of one-
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fluid problems, but their number must be doubled, while the potentials and rates of
flow at the boundaries may vary with time. Examples will be given in- the followmg
sections.

6.3.2 Superposition

The principle of superposition can be applied without approximation to confined and
partly confined aquifers, and only with approximation to phreatic aquifers.

In problems concerning confined or partly confined aquilers, any System III can be
separaied into iwo elementary systems, I and 11, which have the same interface, but
different values of 4y (= p” — ¥). The superposition is valid for a short period 4t
during which the displacement of the interface is negligible, or for periodic variations
of small amplitude, causing negligible displacement of the interface. The following
quantities are added ¢, ¢’, ¢, ¢" and N (n and ¢’) and their derivatives with respect to

ez, :
x, y and f; furthermore 4y and " Since the two systems have the same Z but

. 07 . . ) ) , 82z Ny :
different -a—t it is recommended, in order to avoid confusion, ;hat (E be written
F

: 0Z . ) ) .
rather than Ei’ though both notations are theoretically correct:

The proof follows from ‘
. — The law of linear resistance in frr:sh and salt water, wnttcn f‘or the x dlrectlon :
as an example

dep o L 00
g kD~ = 4. = — kD =
Since the two systems have the same interface, the values of D and D" are the same.
Moreover, the definition of & has been’ given in such a way that k is the same in
fresh and salt water. Thus the equations can be added by adding the values of
¢ and ¢, or of " and g°.
— The law of continwity in fresh and salt water (ln the x direction as an example)

% @_y =N+m oz
ax By ot
oaf , %4y _ .2
ix oy ot

These equatlons are lmcar in gs, 4y, 4x> 4 » N and 62,’6! 50 that they can be added
by adding the reapcctwc values of these quantities.
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= In the case of a confined aquifer
. N=0

— in the case of a partly confined aquifer

This relation is linear in a, d¢'13t, ¢ and @, which guantities may be added.
— The-daw of discontinuity at the interface

¢ @' =—dyZ

where Ay {positive) stands for y* —v. Since the two systems have the same inler-
face, Z is the same, and the values of ¢, ¢” and Ay may be added.

_ The condition that (Ay); + (4y},; equals the true difference in specific weight does

not define each of the quantities (A7), and (47);, mdwndually A choice can be made.
In each of the examples given below, one of the systems will be given the true differ-
ence in specific weight, and the other, or the others, homogencous fluid (dy = 0).

~ This choice does not yet determine Systems I and 11': still other characteristics may be

defined arbit'rari]y, e.g. one system steady, the other nonsteady.

- In problems concerning phreatic aquifers the principle of superposition cannot be

applied without-approximation. Two systems with different ¢ have different /(= ¢/y),
and with the same Z they have different D.- According to the method adopted, only
one of the elementary systems is a two-fluid system. Only here do D and D" have a
physical meaning. The approximation is that D 4 D", as determined from this
system, is not exactly equal to the thicknesses of the aquifer, as assumed in the one-
fluid systems. -

In all problems (concerning confined and partly confined, as well as phreatic aquifers)
superposition during a period 47 is only allowed if in each section the variation 4D
of D is small compared with D. [n the case of periodic movement the amplitude of the
variations of D, to be called 40 as well, should be small compared with D. This
condition needs verification, since D tends to zero near the coast. The mathematical

" condition is that AD{D remains small when D tends to zero.
Nonsteady two-fluid problems are usually difficult from a mathematical pomt of
~view. To avoid the accumulation in one system of complications resulting from

difference in densities and nonsteady movement, it is advisable to choose the ele-
meritary systems so that the two-fluid system is steady, while the movement of the
interface resuits from the one-fluid systems. The movement of the interface in homo-
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geneous fluid systems must therefore be siwudied in detail.

Physically no interface exists in those systems, but mathematically Z plays a role in
the superposition. [t is therefore useful to imagine two layers of water of the same
density, bur of different colour, so as to maintain the notion of the interface.

The velocity in both water layers is the same. This follows from

y— v = k(Y — pHiga

where 3 — y = 0, and therefore v — +v* = 0. Thus ¢ and ¢” are proportional 10 the
respective flow sections

where D 4+ D" = D, ]

The one-fluid system may be sieady or nonsteady, but in both cases the interface
{between the colours) is likely to displace, since even in steady flow there isnoreason
why the interface should coincide with a stream line. The displacement of the inter-
. face is determined by

E)Z N

i -
M % D+D'm

where D+ D" = Dy,

This follows from the law of continuity in fresh and salt water:

|
|

i) d
| %x 0% _ N 4%
| adx  dy ar
! a " a r Z
' dx Oy 6!

| Dividing these equations by each other gives the result mentioned since, according
| to the foregoing, the left-hand members are in the ratio D{D" 1o each cother.

Tn'a phreatic aquifer A is the sum of two terms, depending on » and 9/1/01, respectively.

-{2) N=n—-m @
ot

and
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3 D=hr-27
On elimination of ¥ from (1), (2) and (3) it follows that
ap - D" n D éh
= +

&8 D+D'm D+D ot

oZ_a D m, D o

ét a P+ D" E—_ D+D" &t

Thus the variation of Z, D or D" can also be written as the sum of two terms depending
on n and 8h/3r respectively. )
For n = 0 these formulas become

oD D gk

&t D+D" X

When ai)plying the superposition to a time interval dt, and writing 4k and 4D for
the increments of 4 and D during that interval, the first equation indicates that

AD 4k

D D4+ D

The same formula applies when 4# and 4D represent the amplitudes of a periodic
movement,

This result should be interpreted as follows: if the variations of D result from varia-
tions of Ji only {(#» = 0), and these are small in relation tc the total thickness of the
. aquifer; (right-hand member small) then 4D/D remains small when D vanishes near
'the coast, which was a condition for application of the principle of superposition. An
example is given in Section 6.3.4.

From the above the following law may be deduced, which applies to any system where
superposition, as described, is applicable. If in a two-fluid model one or more of the
hydraulic quantities determining the flow system, are suddenly changed, the aquifer
reacts as if it were filled with homogeneous water, as long as the displacements of the
interface are small. The same is true for periodic variations of these quantities, if they
create small displacements of the interface. The hydraulic quantities determining the
flow system are: the potentials and flow rates at the boundaries, the recharge and, in
the case of a partly confined aquifer, the ¢’ values.
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Examples (provided the displacements of the interface are small) are:

~ A pumping test on a frcsh-watcr well gives as a result the transmissivity of'the whole
aqu1fer kD,

- Tidal variations or seasonal variations of a river level propagate uniformly through
fresh and salt water.

- Seasonal vartations in rainfall or percolation from drainage affect fresh and salt
water alike. -

- The same is true for a sudden change in ¢ in a partly confined aquifer, due to
drainage or irrigation. -

For systems affected by a sudden change in the hydraulic conditions, the proof is
based on the consideration that immediately after the change the sysiem can be
considered the sum of two elementary flow patterns:

— System I, representing the conditions before the change. In this system * — y has
the real value. ' ‘

- System TI, characterized by the change in the hydraulic conditions, combined
with y" — y = 0, representing homogeneous water. .

In the case of periodic variations System I is characterized by the average values of
the hydraulic quantities and the true difference in densities, whereas System IE
contains the variations around zero value, in combination with y" — 9 =20
(homogeneous water).

The formulation of the proofin general terms may lack precnsnon examples will be
given in the following sections.

6.3.3 Partly confined aquifer

Tn this and the following sections some examples will be given of nonsteady flow
systems. In the present section the solution will be given by means of a numerical
method. In Chapter 7 more examples of nonsteady systems will be shown, also solved
by numerical methods, but then applied to systems depending on two horizontal
coordinates x and y, whereas the present scheme depends on x only. As will be seen,
there is some difference in method, In the present section the differential equalions
are used as they are; in Chapter 7 after some quantities have been eliminated.
Figure 81. - The model is defined by parallel flow in a partly confined aguifer. The
boundary conditions are constant:

0utside the sections A and B a constant sea level. Reference level coincides with sea
level: p" = A" = 0.

Inside the sections A and B, qo is given numerically as an arbitrary function of x,
independent of time.
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A B Fig. 81

For an arbitrary moment 1, Z is given numerically as an arbitrary function of x. The
problem is to determing the flow system during the subsequent elementary interval |
dt, and in particular ¢Z/0t as a function of x, so that the values of Z an elementary
time interval 47 later can be established, and the calculation repeated.

Since even the calculation of one single interval 47 takes much time, the examination
of a sequence of intervals may easily exceed the capacities of an engineer working by
hand, and computers would have to be used. Still, the work by hand can be taken into
consideration: firstly, for didactic reasons, to acquire some familiarity with the
methed on a simple example; secondly, in cases where (he interface moves very
slowly, and the first interval, or the first few, already cover the period in which the
planned works are written off by deprematlon finally, one interval may be calculat-
ed to check a computer program.

In calculations of this kind the Iength of the aquifer is divided by section lines into a
sufficient number of elements of equal length dx. The quantities ¢, ¢, ", N, Z and
0Z{3t are measured on the section lines, while ¢ and ¢” are measured in the fields
between these lines. The thicknesses of the aquifers £ and D, although directly
related to Z, are measured in the ficlds as an average of the values on the adjacent
lines. dpfdx is determined as Ap/Ax where A is the difference in ¢ between two suc-
cessive section lines. The value of d¢pjdx obtained applies to the field between the lines,

A .
where also ¢ is measured. dg/dy is determined as :'-—g, where Ag is the difference in g

between two successive fields,

Some difficulty arises at the extremities of the fresh-water body under the sea, where
the condition ¢ = 0 requires that the extremity is in the middle between two section
lines. Since this point is moving, it may be anywhere. The condition ¢ = 0 is therefore
applied to the whole field in which the point is located. The error is small when Ax
is small.

The values of Z at the beginning of the interval are used for the whole time interval,
which introduces a recurring error, always in the same sense. This imperfection must
be accepted if the simplicity of the method is to be safeguarded.
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For each period At the nonsteady system, T11, is split up into two elementary systems,
Tand IL

System | is defined by

— The true values of Ay

- Qutside the sections A and B, ¢* = 0

- The values of Z, corresponding to the form of the interface at the beginning of the
interval,

- Steady flow (salt water at rest ¢” == 0).

This system can be calculated, as will be shown below. As a result, p; is found on
each section line. These values are different from the given ¢y, values. System [l
therefore must be characterized by

Or = Pni — Q’;
System [T is then defined by

- Homogeneous fluid,
- Qutside the sections A and B, ¢ =0

- Qu=0\u— ¢

- 24, = Z,, but enly.as a separation between layers of different colour.
System !I is steady as is System I, but the interface (between the colours) moves, since
it does not ceincide with @ flow line. The calculation of System LI gives as a reswlt the

values of dZ/3¢ in each section line, and thus the new value of Z (o be taken as a basis
for the calculation of the next time interval.

The operations follow the steps indicated below.

System 1:

(1) @ on the section lines is determined by the law of discontinuity at the interface
¢~ =—4dyZ

where Z is given, ¢" = 0, and 4y has the true value.

(2) g in the fields is determined by the law of linear resistance.

= kD
q Ox

where dpjdx is derived from ¢ by differentiation on finite increrﬁf:nts, while D is
geometrically related to Z.
(3) N on the section lines is determined by the law of conlmulty

ﬁq=_N
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where d¢/dx is derived from ¢ by differentiation on finite increments.
(4} ¢@; onthe section lines is determined by

k!
N=—( -9
D!
System 1I corresponds to that of Section 4.2.4: flow in homogeneous fluid filling a

partly confined aquifer, where between the sections A and B, ¢’ (=¢j;; — @) s
given as an arbitrary function of x, and outside these limits is zero to infinity. Thus

- any physical quantity can be determined, in particular & (its values on the section

lines). Since for each section line Z and therefore D7 is known, ¢Z{é follows from

oz D" N

o Dm

Thus Z at the beginning of the next time interval can be determined, and the eycle
repeated.

6.3.4 Propagation of the tide

Figure 82. — A phreatic aquifer with approximately constant D is bounded by two
paraliel sides. It receives a constant recharge s, while the sea Ievel at both sides varies
according to

.

@" = g sin wt

where T == 2xfw is the period of the tide. The amphtude of the tide is small comparecl
with the thickness of the aquifer. :

Fig. 82

The solution can be found by superposing two systems, I and II.
System T is defined by :

- The true value of 4y

— Recharge »

- ¢" = ( at both sides.

176




This is the steady-flow system examined in Section 6.2.4. The formulas from that
section can be used. They define in particular the shape of the interface and the phreatic
surface, or in mathematical terms, Z and k as functions of x.

- System I is defined by

- Ay = 0; homogeneous fluid
- No recharge: n =0
~ Tidal movement: ¢" = g sin wf

“This is the nonsteady flow system in homogeneous fluid, studied in Section 5.3.2.

The formulas can be found by simple summation of those of the two elementary
systems. They will not be given here. Only some characteristics of the system will be
analysed.

The water surface as well as the interface describe small oscillations around their
average position, which is that of System L. These oscillations propagate from the
coastlines inwards. Thus the fresh-water body transforms contmually, somewhat like
a figure on a flag floating in the wind.

The condition that the variations of D in any section are small as compared with the
value of D must be verified. These variations occur pnly in the homogeneous flow
system, [I, which isindependent of », since s only occurs in System 1. It was shown in
Seciion 6.3.2 that in a homogeneous fluid system with n = 0 the variations of D are
related to those of i by

AD 4k
D D+

In any section the amplitude 4/ is smaller than, or of the order of, the tidal amplitude,
which is assumed small compared with the thickness of the aquifer D + D". There-
fore the condition is satishied that the amplitude AD is small in comparison with D,
It should be noted that the sections near the coast are singular pointsin the mathe-
matical selution of both Systems 1 and 111, A further analysis of the extremity of the
fresh-water body should be made, as indicated in Section 3.2, giving special attention
to the horizontal flow of System 11, which tends to displace the last, steep part of the
interface.

6.3.5 Periodic variations in recharge rate

Figure 83. - The model is the same as in the previous section: a phreatic aquifer with
approximately constant thickness, bounded by two parallol plares. The sea level at
both sides is now assumed constant (¢” = (), whereas the recharge varies according to

n=4#, + N €OS N
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I L O Y Fig- 83

If the period T = 2xfe is one year, the formula corresponds to seasonal variations in
recharge rate.

The solution can be found by superposmon of three elementary systems, following
the same reasoning as in Section 5.3.3.

System 1:

—~ The true value of Ay

— Average recharge #,

~ Constant sea levels, ¢” = 0

This is the steady-staie system of Section 6.2.4. The formulas are

w2=1’(? ”;?)n,x(l-x) -

=2 _z-_%  p_p-z=_Lt 7
Y Yy =7 LA A
System II:
- Ay --DHomogeneous fluid. | .

- Recharge n = n, cos w?
— Sea levels varying according to

go——o—?sm of

M)

The formulas of this system are:

o
= 2o% sin wr or B = 22 sin ot

mw L lid]

g=20




System TII: .
- Ay = 0, homogeneous fluid
— No recharge n = 0
— Sea levels varying according to
p=— "0 Ginwt
ma

- The formulas are

@ = — Ro¥ Zipe” “sin (wt — au)
wie _
h =2
¥
Ny — oo, ( 21"5 )
g=——2 Xse “sin| wt + = — o
%4/ 2 8

where o = \/mw[ZykD and in the successive terms:

p=-+I1 § == —] u=x

+1 +1 f—x

—1 L4 I+ x

—1 —1 2—x

+1 —1 24 x

+1 +1 33— x

—1 IS 34 x
etc.

The farmulas of the whole system can be written by summing ¢, & and g of the ele-
mentary systems, 1, IT and 111 ' )

It should be checked if in each section the variations of D are small compared with
D, These variations are limited to Systems 1I and 1II, since System I is steady. In
System 111, n = 0, therefore

AD 4k
D D+D"

AD and Ak being the amplitudes of the variations of D and A, where 44 is the total
effect of a number of damped oscillations, not in phase with one another. Since 44
will not be greater than the amplitude of the sea level variations in System 111, that is
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;z;. it suffices that this quantity be small compared with D, which was a premise of the

calculation.

In System II, where #» # 0, the variations of 2 can be found from the formulas of
Section 6.3.2., but a shorter reasoning is possible. In this system no flow occurs, thus
the interface is at rest. The surface moves up and down according to

. H .
h=— _2 sin ot

iy
Thus the variations of P are the same as those of &, whose amplitude is agfmew. This
quantity cannot always be small in comparison with D, since D reduces to zero at the
ends of the fresh-water body. Although this fact condemns the calculation in principle,
the formulas obtained may be acceptable as an approximation of the reality, consider-
ing that: :
- Due to the steep slopes of interface and water surface near the coast, small values of
D occur only over a limited length of the aquifer. Since D? is proportional to x(/ — x),
it can be seen that over 9/10 of its length the fresh-water body has a thickness of more
than 439 of the maximum or more than 56 %, of the average value,
— The variations of D are alternately positive and negative,
- Calculations of ground water, especially for orientation, are generally rough.

Since the extremities of the aquifer do not entirely satisfy the assumptions underlying
the calculation, it is recommended that in any practical problem these parts be studied
in" detail. Assuming that in a particular case superposition is feasible with a fair
approximation, interesting conclusions can be drawn as to the periodic accumulation
of fresh.water underground. Since both the surface and the interface move, the volume
" of the lens changes. The frésh-water body acts as a storage reservoir, whose character-
istics can be analysed on the basis of the established formulas.

Figure 84. ~ Five quantities play a role, indicated schematically in Figure 84.

- N. The varialion in recharge rate over the length 7 of the model, per unit breadth in
the other direction

= Itg COS

— E. The variation in the flow rate of exchange between the aquifer and the sea at
both sides. This flow occurs only in System 11[, which is a homogencous fluid system.
Tt is uniformly distributed over the height of the aquifer. Since the fresh-water body
ends in a point, only salt water is exchanged, whereas the outflow of fresh water to the
sea is constant, according 1o Sysiem . £is determined by the formula of g in System
1T for x = O
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Fig. 84

a

E=— nov/2 Xse” “¥sin (cur + %ﬂ - au)

where in the respective terms:
s=—1 u=10

+1 f

+1 !

—1 2

—1 2f

+1 3!

+1 3
etc.

— I The variation in the volume of fresh water contained in the lens, due to the
displacements of the interface.

— &, The same for the displacements of the surface.

~ V. The variation in the fresh water volume contained in the lens.

The five quantities N, £, {, S and V have the same dimension. They are sine functions
of time with the same yearly period, but different phase and amplitude. They can be
added and subtracted (either analytically or graphicaily as vectors). The result is
always a sine function with the same period, but the amplitude is not simply the sum
or the difference of the amplitudes of the terms. With these remarks in mind, the
simple notation in sums and differences may be used.

— Tt follows from the incompressibility of the salt water that

f=F

which means equality in phase and amplitude. This formula defines /, since £ 1s
known.
— Since the water in the aquifer is incompressible:

N =3§+ E
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which determines §, since N and E are known, Since E = 7, also
N=§4171

The right-hand side clearly equals V:
N=S41I=V

This formula, written as ¥ = V expresses that the variations in recharge are fully
stored in the fresh-water lens. Written S + 7 = V, where S and I are known, it in-
dicates which parts § and 7 of the storage are due to the displacements of the surface
and the interface respectively. ;
Since all five quantities N, £, I, § and ¥ have the same dimension, they can be made
dimensionless when dividing them by #gl, weiting N, E', I', § and V', Thus
fr=- ﬁ se'“sin(wr + 2—ﬂ - au)
af .

S =N —-F =coswt + 1-/[—2236_0:" sin (wt + %ﬂ - ocu)
. x

These formulas show that the relative importance of /" and S depends only on the
parameter

0 =of = 1 /mw/2ykD
the values of « in the series being multiples of .
This relationship can be analysed mathematically (not shown here). On physical
grounds it is clear that for great values of 0, 8 is predominant, whereas for small
values of @, I’ comes to the fore.

| This can easily be seen by attributing great values of @ to great values of / and
| average values of m and & D. In an elongate model the waves of System T1I die out
| in the coastal zone, while the major part of the model is under the influence of
| System 11, where the interface does not move, and §' stands for the whole accumu-
| lation. Low values of 8 can be attributed to average values of f and m; and high
| values to £D. The phreatic surface then scarcely rises above sea level and does not
| accomplish important movements. Thus / predominates.

6.3.6 Extraction of fresh water from a well or a gallery

In this section the problem of extracting fresh water from a well in a two-fluid system
will be examined. The analysis will be qualitative only. It will be given first for a partly
penetrating well in homogeneous soil and then for a fully penetrating well in aniso-
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tropic soil (without resistance in vertical direction). Although the line of thought is
the same in the two cases, the choice of the elementary systems is different. There-
fore the results are difficult to compare. The analysis in the two hypothesis is most
instructive and may be considered as a preparation for a more thorough examination
of the problem of the partially penetrating well in two-dimensional flow schemes,
which is outside the framework of this publication, It also forms an intreduction to
the study of the influence of the transition layer on water extraction from wells. The
analysis is given for a well, but applies also to a gallery. The assumption of aniso-
tropic scil without resistance in vertical direction would correspond fairly well to a
galtery in broken limestone crossing a vertical fissure.

The extraction from a well in a large aquifer is a local and minor phenomenon in a
much greater two-fluid system. Its influence extends in principle to the boundaries of
the aquifer and can be split up, more or less artificially, into a local, rapid upconing of
salt water under the well, and a wide-spread slow deformation of the whole fresh-
water body. In order to study the first effect separately, the area around the well will
be given artificial, steady boundary conditions, thus neglecting the second effect.

B Aty Fig. 85

Figure 85. -~ A circular boundary is assumed with a radius, two to three times the
thickness of the aquifer, so as to imply nearly horizontal flow at the boundary. All
around the circle ¢ and " are kept autificially constant, which in a laboratory model
can be done with a series of devices as shown schematically for the salt water in
the figure. Water of the appropriate specific weight is supplied in abundance, so that
the top overflows, which fixes the value of &, and therefore that of o} = ¥"h{. Il the
same is done for the fresh water, also ¢, is fixed, and consequently the interface,
since Z is determined by

o~ =0"-NZ

Since the diameter of the boundary is small compared with the horizontal dimensions
of the aquifer, the recharge within the boundary may be neglected, which corresponds
to the assumption of an impermeable top layer.

183




The effect of water extraction will now be examined successively for a partly penetrating
well in homogeneous soil and a fully penetrating well in amso(rop:c soil {without
resistance in vertical direction).

Fartially penctraring well

Figure 86. — The screen is assumed to be one half of a spherc at the top of the aquifer.
The reference level passes through the lowest point of the screen. If the extraction
rate is limited, a steady state will eventually be reached, where the top of the cone
remains at a ceriain distance under the screen. In a marginal case it will just reach the
‘screen. When the law

¢~ ¢ =—-0 —9Z
is applied for the lowest point of the screen, where Z = 0, it is found that
= (pl”

where @ is the potential in the well in the final state. Thus the condition that the top
of the cone stabilizes under the screen is

@4 "< <@

which indirectly defines the marglnal extraction rate.
At any moment of the nonsteady period, the flow system (I1l), is the sum of two
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elementary systems, I and 11, commonly characterized by the form of the interface at
that moment, and further by: :

System L:

- Homogeneous water (4y = 0}

— In the well @ = Qg (and 0" = 0)
- At the boundary 9 = 9" = 0

System 1I:

- The true value of dy

— In the well 0 = 0, (@ = 0}

- At the boundary ¢ = ¢, and ¢" = o

This subdivision can be made for any moment of the nensteady period as well as for
the final state. System I is the same at any moment, although the form of the interface
between the coloured layers changes. It is a steady-flow system in homogeneous water.
Its streamlines point upwards and tend to displace the interface (between colours) in an
upward direction, thus creating the cone. System Il is characterized by nonsteady
flow without extraction. The cone subsides by its weight.

Thus at any stage of the nonsteady period the interface is under the combined in-
fluence of System | raising it and System 11 lowering it, and these influences resultin a
rising up of the cone. In the final stcady state these systems counterbalance each other,
50 as to keep the interface in place: :

In the final state a certain instability may be expected, as can be seen from the follow-
ing reasoning, Tf, as has been assumed, a final state is reached where the potential in
the well is higher than @} no salt water can enter into the well. If now the diameter of
the well, already assumed small, is reduced considerably further, the extraction rate
remaining constant, the flow pattern in the aquifer will scarcely change and the poten-
tial on the half sphere corresponding to the former screen will remain about the same.
But imporiant potential losses arc created between the place of the former screen and
the new one, so that_the potential in the well will be much lower'and even considerably-
below @|. Thus salt water could, in principle, enter (he well, which, however, will not
occur because of the high potential at the place of the former screen. The question
arises whether a second final state is possible. Thns prob em 15 laft for study on'two-
dimensional models.

Fully penetrating well Coe
Figure 87. — The same problem can be posed for a fully penetrating well in aniso-
tropic soil. The system (111} is again split up into two elementary systems, ] and 11,
but characterized other than in the above analysis. T :
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Fig. 87

System I:
— Ay = 0 Homogeneous fluid.
~ Extraction @y from the well. Since the fluid is homogeneous, a part (D{D,} Q4 is
extracted from the upper layer, and a part (D7/D,) @, from the lower layer.
— At the boundary ¢ = ¢" =0

System 11;
— The true difference in spemﬁc weight Ay
— Extraction of fresh water at a rate (D"/D,) O, from the upper layer, and injection of
salt water at the same quantity into the lower layer. The total extraction is zero, (The
injection into the lower layer counterbalances the extraction of System I, while the
extraction from the top layer brings the fresh-water supply up to. Q).
- At the boundary ¢ = p,;. ¢" = ¢|.
System [ is steady. Since the fluid is homogeneous, the streamlines are horizontal.
The flow displaces the interface (between the colours) towards the well, which means
that it lowers the cone.
System 11 is nonsteady. The water injected into the lower part of the weH does not
reach the boundary for the full amount. A part is stored in the rising of the interface.
In the same way, the water extracted from the upper part of the well is not fully
supplied through the boundary. A part of it is delivered from the rise of the interface.
During the nonsteady period System 1 remains the same, but since the interface
(between the colours) rises, the flow causes an increasing downward movement of the
interface. System 11 changes with time. The quantities injected and extraciad increase
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Fig. 88

height

E D € B A
salinity

with increasing £7. Thus the effect of cone-b.uilding becomes stronger. Finally equili-
brium is reached, where the combined influences of Systems T and 1l keep the inter-
face in a steady position.

When the flow systems of the partially and the fully penetrating well are compared, a
fundamental difference appears. Whereas in the case of a partially penetrating well
System | raises the cone and System 1[I lowers it, the reverse applies to the fully pene-
trating well. The difference is due to the different choice of the elementary systems,
which is, however, in either case the most logical. The analysis of the partially pene-
trating well systems could be repeated on the basis of the other scheme by assuming a
second screen at the bottom of the aquifer, but the study made in this way would be
more artificial and less instructive. :

6.4 TRANSITION LAYER

6.4.1 Fundamentals

Between fresh and salt water a transition layer develops for two reasons: (1) diffuston,
which is the movement of salt malecules through the water and (2) displacement of
water perpendicular to the interface or perpendicular to the transition zone, which is
limited to nonsteady flow. Both factors will be cxamined in detail.

Figure 88. - (1) Diffusion can be studied on a groundwater model, filled with fresh and
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salt water at rest and separated by a horizontal, sharp interface. The concentration of
salt molecules in the salt water is higher than in the fresh water, where it is zero. As a
consequence the molecules move upwards. The concentration in the salt water
decreases; that in the fresh water increases. If the salt diagram is first AA, it becomes
successively BB, CC, DD and after an infinitely long time EE. The latter line corre-
sponds to total diffusion, where both layers have the same salinity, The laws governing
this phenomenon will not be treated here in detail. Only the following remarks will be
made: ' '

~ The phenomenon is slow; the formation of a transition layer may take tens or
hundreds of years.

- The diffusion rate depends on the pore space; not on the permeability.

- The curve is symmetrical with respect to point M.

N
\ 4
C

Figure 89. - (2) The second factor can be studied on the same model: two fluids at
rest, separated by a sharp horizontal interface. If an upward flow sets in, the interface
moves upwards, but does not remain a horizontal plane. The particles in the middle of
large pores move more quickly than those in the middle of small pores; those in the
middle of any pore move more rapidly than those near the sides, where the velocity
reduces to zero; flow through vertical pores results in a faster rise than does flow
through inclined openings. The same particle rises alternatively fast and slowly: By
chance it may rise as a whole more quickly or more slowly than others.

Throughout the period of flow, differences in salinity tend to develop between the
particles flowing alongside each other in the same pore; salt water particles moving
faster than fresh water particles, salt water flow through vertical pores meeting fresh
water yielded by inclined pores, etc. Appreciable differences in salinity, however,
cannot persist on distances as small as.the widths of the pores. On this scale, diffusion
is effective and creates a zone of brackish water, increasing in thickness as the flow
continues. :
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Figure 90. - These two formative causes are counteracted by leaching, which pheno-
menon can be studied in its simplest form on the model of Figure 90. A parallel
steady flow is assumed, created by uniform infiltration. The fresh groundwater Aows
towards the sea; the salt water is at rest. The intermediate layer not only constitutes a
transition in salimity, but also in velocity. The flow rate varies gradually between the
veloeity of the fresh water and zero (salt water at rest). Thus the transition layer imoves
in all its parts, and each particle reaches the sca after a shorter or longer period.

In natural conditions equilibrium is eventually reached between formation and
leaching, resulting in a certain thickness of the transition layer. In regions near the sea
with off flow over a short distance in a permeable aquifer, the transition layer will be
thin, and the fresh water of good quality. In regions farther from the coast, wheie the
fresh water moves slowly over great distances, the transition layer may be consider-
ably thicker, or may even reach the top of the aquifer, making the water unsuitable for
consumption or irrigation. '

If the transition layer is thin, there is an advantage in conserving this favourable
situation by preventing the undue creation of brackish water. Thus constant extrac-
tion from a well or a gallery is, in principle, better than irregular or periodic pumping
at the same average rale, because the vertical movements of the transilion layer are
limited. It is difficult, however, to give a quantitative appraisal of this effect.

6.4.2 Extraction of fresh water from a well or a gallery

As will be shown in this section the transition [ayer has a paramount and unfavourable
influence on the exploitation of groundwater. Two examples will be given: one of a
well or gallery near the centre of an island, that is without horizontal flow in the fresh
water before the well is put into operation; the other of a gallery nearer to the coast,
where an initial lateral flow exists. In both cases the transition layer is asswmed thin
compared with the thickness of the fresh-water layer, so that comparison is possnblc
with the corresponding sharp interface systems.

For the analysis, which will be qualitative only, the transition layer may conveniently
be replaced by a scries of some five or more layers, each of constant specific weight,
forming a transition in steps between fresh and salt water.
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Exiraction in the cenire of the island

Figure 91. — The model is almost the same as in Section 6.3.6. The artificial boundary
conditions are reintroduced, as well as the devices regulating the potentials and the
salimties of the water of the different layers. Five intermediate layers are assumed.
The potentials at the boundary are ¢, for the fresh water, ¢, to ¢4 for the brackish
water of the intermediate layers, and @+ for the salt water (the symbol ¢" being no
longer used). At first all layers are at rest; the interfaces are horizontal, From a
certain moment onwards a constant quantity (4 is extracted from the well.

When {J, 1s small, a final state (shown in Figure 91) will be reached, resembling that
of Section 6.3.6, where no salt water reaches the screen since the potential @, in the
well is intermediate between ¢, and @4, Assuming that ¢4 is between @3 and ¢4, then,
in the final state fresh water will be extracted as well as water from the upper two
intermediate layers, whereas the water in the three lowest layers, and the salt water,
will be at rest. The lower layers are horizontal, since the interface between two fluids
with different y, both at rest, is horizontal. 1t should be noted that in the very be-
ginning they rose under the influence of the streamiines of System I and then subsided.
Such behaviour, derived from deductive reasoning, should be verified on a laboratory
model, preferably with cil as a fluid, so as to exclude diffusion, which in a scale model
is not reduced in the proper way, - )

The layers delivering into the well are separated by inclined interlaces. According to
the same law, the velocity decreases in steps in a downward direction each time an
interface is passed. -

The same uncertainty exists as to the stability of the final state, when for'a constant
extraction rate the diameter of the well is reduced. This question may be studied on
two dimensional flow models, not to be discussed here, The water from the upper
layers of the transition zone certainly reaches the well. The other layers eventually
might follow one afier the other, thus allowing the salt water to reach the well. The
final state would then be stable.

When it is admitted that the steady flow corresponds to the situation in the figure, the
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result can be studied on its technical merits by considering a series of steady-state
systems 1n the same 'model, diﬂ“ering only in extraction rate. This rate is small in the
first system and greater in each of the following, until in the last system it reaches such
a value that the salt water cone stays just under the screen. It is clear that even in the
first model some brackish water is extracted; in each following system this quantity is
greater becayse more intermediate layers give their water. In the last system the whole
transition layer delivers into the well. Thus extraction of brackish water is unavoid-
able, This result contrasts with the behaviour of a two-fluid system with a sharp inter-
face, where in all systems, even the last, the extracled water would be completely
fresh.

It should be noted that the salinity of ocean water is of the order of 18.000 p.p.m. CI’.
Thus inmixing of only 29 into fresh water results in a salinity of 360 p.p.m., which
exceeds the limit for drinking water, and is appreciable even for irrigation purposes.
The given reasoning explains the unexpected salt troubles encountered so often in
groundwater exploitation in coastal regions, where the influence of the tramsition
layer had been overlooked.

1t can also be seen from the above that the salt troubles increase with the thickness of
the transition layer, expressed as a fraction of the thickness of the fresh water layer.
Aquifers with thick transition layers may be unsuitable for extraction.

Drain near the coast

Figure 92 represents a steady-state parallel flow system in a phreatic aquifer, receiving
a uniform recharge #. The modei is bounded to the left by an impermeable wall and
to the right by the sea. By diffusion a transition layer forms.

Fig. 92

If water is extracted at a low rate from a gallery at C, this water is supplied by the .
upper part of the fresh water body, whereas the lower part delivers .into the sea, as
indicated in the figure. This time the extracted water will be perfectly fresh. The ex-
traction rate may be raised until only the brackish water flows to the sea and all the
fresh water is collected in the gallery.
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Although, in principle, fully fresh water is extracted, the solution should be considered
with reserve for the following reasons:

— The pearer the gallcfy is to the sea, the thicker is the transition layer as compared
with the thickness of the fresh water layer, since brackish water forms along the entire
distance between A and B.

— A series of wells, replacing the gallery, would not have the same effect, since the
division between the water extracted, and that lost to the sea would not take place in 2
vertical plane only, but also.in a horizontal plane {(water passing between two wells),
If the wells are not too narrowly spaced, the flow in a cylinder around each well is
radial, which brings the problem back to that of a well sited in the centee of an
island, where extraction of brackish water is unavoidable.

- In limestone, local vertical fissures crossing the galleries would upset Ehc effect in
the same way as wells.

6.4.3 Double pumpmg

In Section 6.2:8. the theoretical possibility has been examined of extracting fresh and
salt water simultaneously, with a view to increasing the fresh water production, An
analogous technique will be described in this section, where fresh and brackish water
are extracted simultaneously 1o avoid mixing. The method is based on the consider-
ation that the extraction of brackish water is often unavoidable and the remedy is to
extract it saparately, and then to dispose of it.
Figure 93 represents a partially penetrating well, for instance an unlined boarehole in
finely fissured limestone, extracting fresh water as well as some brackish water from
the transition layer. If the ecnergy losses in the well are neglected, the potential at all
pomts of the well face is the same. This potential depends on the extraction rate,
regardless of whether the orifice of the pump is located in A or in B, or the same total
quantity is.extracted by two pumps in A and B, operating simultaneously. In these
cases the flow pattern in the aquifer is the same, since it depends on the value of o at
. the face of the well only. Whatever might be the flow pattern around the well, the
brackish water will enter into its lower part and the fresh water into its upper part, as
a consequence of the difference in density between the fluids. Since the flow is laminar,
the two fluids do not mix. Thus a Section C exists, separatmg the fresh and brackish
water entering into the well,
When the extraction rates of Pumps A and B are @, and Qg respectively, a series of
tests can be imagined where

_Q4+Qé=Qo

is the same, but Qg is respectively 0%, 10%7, 209, ...100% of @,. In all cases Section
C will be the same, but Section P, where the incoming water divides into an upward

T -
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and a downward flow inside the well, will be different. It is possible to choose Q4 so
that Section P coincides with Section C, in which case Pump A extracts purely fresh
water and Pump B all the brackish water. When Q4 is slightly further decreased in
favour of @4, the salinity of Pump A can be raised to the maximum allowable con-
centration, The water of this pump is used, whereas that of Pump B is disposed of.
The application of the method depends on several factors: economic, practical,
hydraulic, etc, which have to be examined separately in each case. The physical base
of the method has proved 1o be sound, as tests in sand, and even in fissured limestone
formations have shown. The principle of a measuring 1echnique developed during
these tests will be described below. A separate section will be devoted to it, since its
application is not restricted to the techniques of double pumping alone.

6.4.4 Testing saline boreholes
Figure 94. — In this section a measuring technique will be described to establish how
the water enters during the pumping into an uncased well, or a screen of ¢ertain length.
The result gives the distribution of the quantities and the salinities over the height of
the well. The example given will be that of an uncased hole in limestone, receiving
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Fig. 94

fresh water in its upper part and brackish water in its lower. To make the example
more general some complicating factors will be added: an impermeable layer P, and
a big fissure Q, vielding abundant fresh water.

In two successive tests walter is extracted at the same rate: in the first, the orifice of the
pump is in the highest position H, in the second in the lowest position L. If the poten-
tial losses in the hole are neglected, ¢ is uniform over the entire face of the well. In
both tests ¢, and therefore the flow patiern around the well, is the same. Thus, the
distribution over the height of the well of the quantities and the salinities of the
entering water is the same too.

In both tests the salinities of the water flowing inside the well are measured during
pumping as a function of the height, either by taking a series of samples to be examin-
ed in the laboratory, or by measuring the conductivity with an electrode sunk into the
well, The instruments will not be described here.

The logs are different in the two tests.

— With the orifice in the low position the flow in the holeis downward, except in the
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small part below the orifice, where it is upward. The downward flow is fresh in the
upper part of the well, but the salinity increases gradually in the lower part, due to
inflow of brackish water. The upward flow under the orifice is brackish. The two
flows mix in the pump; the salinity S, of the mixture is that of the extracted water.

- With the orifice in the high position the flow in the well is upward, except in the
small part above the orifice, where it is downward. The vpward flow is saline at the
bottom of the hole. The salinity diminishes gradually, at first slowly by inflow of less
saline water; then more rapidly due to inflow of fresh water. The impermeable layer P
is characterized by unchanging salinity (in both diagrams); the fissure Q corresponds
to a sudden decrease of the salt content. In the pump the saline upward flow mixes
with the weak downward flow of fresh water, which results in the same salinity S, of
the water delivered by the pump.

From the two Jogs the distribution over the height of the well of the quantities and
salinities of the inflowing water can be computed. The calculation is elementary and
will not be discussed here. '

As 2 first check on the method the measurement can be repeated: the same logs must
be found again, A correct repetition indicates that the turbulence of the flow in the
borehole is strong enough to mix the water in the well with the water entering through
the sides and that there are no turbulent circuits of so great a vertical extension as to
upset the stratification of the rising or sinking watercolumn.

As a second check more tests can be made with two pumps, working simultaneously
at the same total rate, but the lower pump delivering different fractions, 109, 20%,...
of the total. From the results already obtained, the logs of the new tests can be cal-
culated beforehand and the results compared with the measurernents. '

The same method can be used for examining the quality of the water encountered
during drilling of an uncased hole. Tn normal practice a suction pipe or a submersible

- pump is lowered to the bottom of the hole, and the lower part of the hole sealed off

- mechanically before the sample is taken. But as shown above, the orifice may be
placed as high as possible and a sample may be taken during pumping from the bottom
of the hole without sealing. The upward flow in the well guarantees that the sample is
representative of the water entering the hole at the bottom. H only the conductivity
is wanted, an electrode can be sunk in the hole. The method would fail when the
lower part of the hole is in impermeable rock, the water being stagnant. The classical
methad would then fail as well. :
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7. NUMERICAL METHODS

If the boundaries of an aquifer have an arbitrary form, or the recharge is not untformly
distributed over the surface, the problem is generally too complicated to be solved
by formal integration. In these cases numerical methods can be applied, either work-
ing ‘by hand’ or using computers. In the latter case one should be familiar with the
principles of the method and should call in the aid of specialists in computer methods
for determining the detailed program. Mechanization does not exclude caleulation by
hand. Simultaneous manual solutions may be required as a check on the computer
programe.g. to study one out of a series of analogous problems, or a simple scheme of
the same kind as the more complicated problem given to the computer.

Apart from any particular result, however, numerical methods areinstructive: they are
more suitable for the formation of ideas than is formal integration. It is therefore
recommended that in studying groundwater hydraulics some of the easier calculations
be made by hand.

Section 7.1 will deal with so-called iteration methods. The term iteration denotes the
repetition of an ¢lementary operation until, by successive approximations, a result of
sufficient precision is obtained. In principle the process is infinite, but the operations
can be terminated when it becomes obvious that continuation would not change the
result appreciably. The method is comparable to that of summing an infinite series. In
both cases the proof has to be given that the method converges and that the result is
unique, '

Section 7.2 will provide some examples of more straightforward numerical methods,
which in general are simpler than the iteration methods. They may be used alone or in
combination with iteration,
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Both kinds of numerical methods can be applied to one-dimensional flow (parallel or
racial) as well as to two-dimensiona], depending on two horizontal coordinates x and
. In Section 6.3.3 an example was given of application to one-dimensional flow. In
this chapter only the more difficult two-dimensional problem will be examined.-The
application of the same methods to one-dimensional flow is left to the reader.

7.1 [TERATION METHODS

T.1.1 Elementary exarmple )

Figure 95. - In this section an elementary example will be given, showing the method
in its simplest, though not its most efficient form. In the following sections more
complicated problems will be treated and some perfections of the method will be
shown. An aquifer without recharge will be considered, bounded by two river branches
R and a lake L. The form of the boundaries, as well as the potentials in the river
branches are acbitrary; the potential along the lake has a constant value. The flow is
steady. .

L Fig. 95 '

When the calculation is made by hand, the plan of the boundaries is drawn on a large
scale in lead pencil on heavy paper. A net of triangles, as indicated in Figure 95, is
then drawn on transparent paper. Its scale is chosen so that some twenty or thirty
points falt within the boundaries when the transparent paper is placed on'the plan of
the aquifer. By shifting the transparent paper, the net is brought into such a position
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that a fair number of its points coincide with the boundaries. For the rest the bounda-
ries are slightly deformed, so as to follow the straight lines of the net. The net in this
position, limited by the deformed boundaries, is then drawn in ink on the heavy paper.
The potential values along the boundaries are inscribed in ink as well.

An estimate is than made of the value of the potential at each point of the aquifer,
These values are a mere guess, reflecting the engineer’s first idea in this matter; they
are of course all more or less wrong and are to be corrected in the course of the oper-
ations. The accuracy of the first estimate is not without importance: the nearer it is to
reality, the shorter wili be the work of correction.

As will be shown in Section 7.1.3 the value of the potential at any point, if it were
correct, would be the average of the six surroundmg values. Since it is not correct,
there is a difference. This law of the average is the simplest form of a more complicated
relationship in more general conditions. In the present problem it stands for the differ-
ential equation

8l e

4+ T =

ax? 8y’
but applies to finite differences. .
When applying the most simple method, one corrects the values of the potential at the
nodes in a given succession, rubbing out the estimated value and replacing it with the
average of the six surrounding values. After this has been done for all nodes, the
definite result is not yet reached, since the new values of the potential have been
calculated on the base of surrounding values, not all of which had been corrected at
that moment. The operation must therefore be repeated several times. In principle an

infinite number of repetitions is required, but the work can be terminated when it
" becomes obvious that continuation would not change the result appreciably.

The proof of convergence will be postponed to Section 7.1.4,, where the problem is
explained in a slightly different way, providing a better base for considerations on
this point. In that same section it will be explained at what moment the work can
be terminated.

Tt can readily be seen that the solution is defined and unique. There are as many
unknown values of ¢ as there are points in the field (as opposed to the points at
the boundaries). The basic formula, which is a linear relationship between some of
the unknowns, can be written for cach field point as a centre, Thus there are as
many linear equations as there are unknowns. The solution is therefore defined as
well as unique.

198




Fig. 96

712 Different nets _

Figure 96. — The triangular system, which was chosen for the example, is one of three
possibilities A, B and C. In each of these instances each nodal point of the net is
surrounded by respectively 3, 4 or 6 other nodes at equal distances. The nodal points
represent the centres of elementary areas S (shaded) of such a form that they fit
together and cover the whole aquifer. The scale of the figures has been so chosen that
$ is equal in the three cases. The distances « between the points are respectively
defined by: ’ . :

4 :
System A: g’ = 6\/55 = 0,768 5
System B: «* =S = 1,000 §

2
System C: a* = g.ﬁ5= 1,15 §

Each system has its advantages and disadvantages:
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— In System A and C the nodes are aligned in three directions, which facilitates the
adaptation of the net to arbitrary boundaries of the aquifer. In System B, they are
aligned in two directions only. Clearly, System B has advantages if the boundaries are
actually rectangular, as may occur in academic problems.

— In Systems A and C each node is surrounded by 3 or 6 nodes at the same distance,
while in System B the four nodes used in the calculation are at short distance, and the
four others, not used, are at slightly greater distance. The system lacks elegance.

- The hexagens of System C approach the circular form which enables comparison
with radial flow problems.

In the following sections only System C wiil be considered,

7.1.3. Various difference equations

Constant D
For steady flow in an aquifer with constant D the following equation can be established

3o 8%

3x2 By _
by eliminating g, and g, between the law of linear resistance and the law of conu nuity
(see Section 1.3.2). If nis given, N is determined by

N=n

independent of ¢. If in the case of a partly confined aquifer, ¢’ 1s given, N is determl-
ned by

kf
N=__ LA
o (9"~ o)

dependent on @.
Figure 97: — Since the formula is a differential equation, it establishes the relation -
between ¢ in a certain point and in adjacent peints at infinitely small distances. For
numerical methods a similar relationship can be established, which relates ¢ in the
nodal point M to the ¢ values in the six surrounding nodes A, B,...F, at small, but
finite distances. The term’ difference equation’ is used for this relationship. In its
general form it reads, when » is given: :

T, +c
(1) gu==AT°
6 -
Where Zo, denotes ¢ + @5 +....... @, and
3 a*
c=_ —.n
2 kD
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which 1s the law of the average, used in the example of Section 7.1.1. If in a partly
confined aquifer ¢’ is given, the difference equation assumes the form

' [ _ Lot opd
2 = S
(2) Py 6+ d
where
d=3 KD 2
2 kD

The derivation starts from the assumption that the elementary triangles are so
small that the linearization usual in the establishment of differential equations is
valid as an approximation. The flow passing through PQ is

a

1 _ . : : :
where b = 39 \/3. When similar expressions for the flows through the other side

of the shaded hexagon are established and added, the total flow leaving the shaded
prism is found to be )
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1 -
20, = 3 V3kD(6ey — Zo,)

For given n, in steady flow conditions, this rate equals the volume of water nS,

. I |
received per unit time on the shaded area .5, where S = 5\/3‘::2. Thus

% V3a’n = ; AV 3kD(6¢, — T ,)

which corresponds to Formula (1). .
In problems of a partly confined aquifer with given ¢’, the volume of water received

k"
per unit time on the shaded area 5 is o S(¢ 'y — @u) which, equated to IQ,

|
I
|
|
|
|
|
|
l|
|
|
I

gives Formula (2).

The meaning of the difference equation may be illusirated by replacing the potential
¢ by the piezometric height A, which differs from ¢ by a factor 7 only. The varying
value of / over the area of the aquifer corresponds to a surface, which at the boundaries
coincides with the given values of 4. If, in the simplest case, # = 0, #,, at each point -
tepresents the average of the surrounding values, which means that the # surface is
like an elastic sheet, fixed along the boundaries and stretched tightly over the area. Tf
n is uniformly positive (recharge), A, at each point is slightly higher than the average
of the surrounding values: the sheet assumes a slightly convex form, as if blown up
from below. If nis uniformly negative (evaporation), the sheet assumes a hollow form.
Since the river slopes down towards the lake and the surface of the lake itsell is
horizontal, the k surface, convex or concave, shows the same trend of sloping down
towards the lake and approaching symmetry in its cross-sections (parallel to the lake),
if the levels in the river branches are about equal.

Ti is because of considerations of this kind that iteration methods are more instructive
than mathematical analysis: the engineer is in direct contact with the properties of the
flow system.

Variable D

In problems of steady flow in phreatic aquifers, where the variations of D are con-
sidered, the reference level is laid at the base of the aquifer. The difference equation
becomes '
Lol 4t e

6

Py =
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where ¢ = 3ya?nfk. The iteration method is applied to the squares of  instead of the
values of ¢ themselves.

Taking up the proof from the beginning, the horizontal flow between M and A is

. = kpp2M T 8a
a

where D is the average thickness of the aquifer between M and A, that is

Dol @t

¥ 2
Substituting this value of D in the above equation gives
kb
Q4= — (py — 02
2ay

After summation over the six points
kb
20, = — (693 — Zo)
Zay
This ofi-flow is restituted by the recharge nS on the area § of the hexagon, thus
kb
nS = — (6¢x = T3
2ay

which corresponds to the given formuia.
The same result can be obtained if, in the formula for constant thickness, ¢ D is
. replaced by ¢3/2y. '

Two-fluid system
Similar substitutions may be applied to obtain the formulas for ¢ in steady two-
fluid systems with stationary salt water. The two following cases have 1o be distin-
guished, where commonly

ol o TPt
" 6

but for different values of ¢.
— In the case of a phreatic aquifer, when the reference level is laid at sea level (¢” = 0),

L

@? of the previous case may be replaced by 2, which gives

¥ —7
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390" = 9) a’n

o= —_—
Y k _
~ In the case of a confined or partly confined aquifer, when » is given, independent of
Py !
v

above the top of the aquifer, where a, is the elevation of the sea level above the top of
the aquifer. Then :

¢ =3(y" — Natnfk

Once the values of ¢ at the points of the net are determined by means of the iteration
method, those of /# and Z can be found by means of the formulas given in Section
6.2.3. The correspongding problem for a partly confined aquifer where ¢’ is given will
not be treated here, since the difference equation is not linear and would not form a
good basis for an iteration method, where the elementary operation should be simple.
In the cases of a one-fluid system with variable D or a two-fluid system, the flow
section may reduce to zero at the boundary, which is even the rule along the coast in
a two-fluid system. Although ¢ shows a singularity at the boundary, ¢* ts analytic,
Therefore, mathematically the iteration may be applied on the value of ¢?, without
restrictions, although physically the border sirip requlrcs a detailed examination (see
Sections 3.2 and 6.2.2).

7.1.4 Fnproved procedures

In this section some improvements of the iteration method will be discussed. There
are two reasons for doing this. First the method given in the example of Section 7.1.1
is not the most rapid. This argument is relevant when the operations are executed by
hand, but loses importance in computer programs, where it is simplicity, rather than
rapidity, that counts. Secondly there is an interest in showing seme variation in the
procedure; more insight is gained and a better basis is faid for considerations on
convergence. _

The exampte will be given for fresh waler ftow in a partly confined aquiler where ¢’
is given in each node, which is one of the most complicated problems studied. The
difference equation reads:

P _ Bp.+ dﬁPM
T T 6w d
where
d = _:_; IC_JI,E az
2k
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Fig. 98

Figure 98. - This net is drawn in ink on thick paper and on a large scale. Above each
node, in ink as well, the local value of ¢' is indicated; to the left in lead pencil the
estimated value of ¢; to the right, also in lead pencil, the correction, positive or
negative, to be added to the value of ¢ to bring this value into agreement with the sur-
rounding values, according to the difference equation. This correction is calculated
and indicated, but not yet added to the value of ¢,

Then, node after node, the corrections are added. This is done in the following way
{the left-hand figure shows the position before the cotrections are added, the right-
hand figure the position after): '

- Add the correction + 9 to the ¢ value of 78 at M, by rubbing out the value 78 and
replacing it with 87 (= 78 -+ 9); rub out the correction + 9 at M and replace it with
zero.

- Still a secondary correction is required, for the following reason. When at A the
correction + 3 was calculated, the value ¢ = 78 at M was used. Once this value has
been’ changed (increased by 9), the correction at A should be changed accordingly

adding v or about 1,5 if 4 is small compared with 6. This must be done at the six

£

nodal points surrounding M.
To obtain rapid results by hand, the points are taken in an u'rcgular succession, gwmg
priority to nodes with high corrections, especially when they are surrounded by cor-
« rections of the opposite sign. The secondary correction then totally or partly cancels
out the values noted in the surrounding nodes. If in the beginning all corrections have
the same sign, this means that the values of ¢ have been estimated generally too high
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or too low, It may then be more efficient to start again from scratch with another
_ estimate. '

* Instead of adding the whole value of the correction one can better add a multiple of
6 - d, 50 as to avoid accumulation of errors by rounding off. A part of the correction
then remains indicated on the right-hand side of the nodal point. In zones where all
the signs are alike, the desired variation in sign may be created artificially by applying
too high a correction to some points. ,

These remarks do not exhaust the matter: other methods to speed up the operation
may exist. In the case of mechanical computation still other ways may be followed.

It can be deduced from the above that the method converges. Even if all the correc-
tions have the same sign, a correction p at M is replaced by six others, each equal to
p{(6 + d) and with the same sign. Thus the sum S of the absolute values of all cor-
rections decreases at every elementary operation. But since 4 is small in comparisen
with 6, and in some problems zero, the effect is small or nil. Yet, even if the corrections
are uniformly of the same sign and d = 0, the sum S decreases each time a node ad-
jacent to the boundary is treated, since at the border nodes no secondary corrections
are added. Continuous decrease of the sum S of the absclute values of the corrections
means convergence of the method, since S cannot drop below zero and cannot stop at
another limit either, the solution being unique.
The question then arises as to how long the calculation should be continued. Although
at all times and for any node the drawing shows the correction stilf to be added, it
does not answer the question, The correction still to be added is comparable to the
next term in a series, which is not equal (o the rest term.
To answer this question physical considerations may be used. Each set of ¢ values in
the nodes of the net corresponds to a true flow pattern, but with k'/D’ or ¢’ values
different from those defining the problem. Thus the same equation

¢M=E¢A+dﬂ";ﬂ; d=§@_’az

6+ d 2 kD

may be used to translate the corrections still to be added into differences with the
given k'/D’ or ¢’ values. If these differences are within the limits of precision admitied
for these quantities, the operaticns can be terminated. Tn problems where » is given,
the corrections may be translated in differences of n. :

7.1.5 Wells in the field

The theory given is based on the assumption that the elementary triangles cover small
areas in which ¢ and g are continuous functions of the codrdinates. This condition is
not satisfied in the vicinity of a well. Therefore special methods must be developed to
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deal with problems where water is extracted from one or more wells,

Figure 99. - The example given will be that of an aquifer with constant D, surrounded
by a boundary with given values of ¢. The recharge » of the aquifer is given in each
node of the net. Two wells extract water at rates @, and {2, respectively.

Fig. 99

The solution can be found by superposing the Following elementary systems:

System I, characterized by:

- The first well, exiracting at a rate @, sited in an infinite aquifer.

- Axbitrary value ¢, of the potential in the well.

- No recharge (n = 0).

This is the system where ¢ varies with the logarithm of the distance to the well. The
logarithmic lunction gives-the values @; of @ at the nodes of the boundary (see Section
2.3.1). .

System 11 is similar to System 1, but applies to the other well. Tt defines the values
@4 of ¢ at the nodes of the boundary.

System 111:

- No extraction from the wells,

- The true values s of the recharge in each node of the net,

- Potentials in the nodes of the boundary equal to

@rir= ¢, — (p, + @11

where ¢, are the true values.

This system can be calculated by iteration, since ¢ is a continuous function of x and
. The singularities have been limited to Systems I and I, where exact integration
accounts for them,

1t can readily be shown that the seolution is independent of the arbitrary choice of ¢,
and ¢,. If ¢, — x had been chosen instead of ¢4, all ¢ values in System I would have
been lower by a quantity x, hence also the values ¢, at the boundary nodes. Thus the
@5, values would have been that much higher, and the x terms would have cancelled
out in the superposition of Systems I and TIT.
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The same principle may be applied to phreatic aquifers or to two-fluid systems. The
superposition must then be executed by adding the values of ¢2.

7.2 NUMERICAL METHODS WITHOUT ITERATION

‘In this following section some examples will be given of the use of the same network
in numerical methods without iteration. They may be used independently or in com-
bination with iteration metheds, and can be applied to either steady or nonsteady
flow problems. Thus the variety of possible applications is very great, and covers most
of the problems that can be posed in the categories examined in this study. The
operations may be long, but computers can be used.

Long calculations are especially to be expected when a nonsteady movement is follow-
¢d over a long series of elementary time intervals At ‘Since, however, the movement
of the interface is generally very stow, the elementary time interval 4¢ might be of the
order of the period in which the new works are written off through depreciation —
some 30 or 50 years — in which case the calculation of one interval might suffice to
examine the feasibility of a technical execution,

The problem is not always defined in an academic way. Studies on limited areas, not
reaching to the boundaries of the aquifer, can be made if sufficient data are available
from measurements. From measured values of ¢” and Z for instance, as will be shown,
the movement of the interface can be deduced in any limited region.

In other cases the data known from measurement may be over-abundant. The
numerical methods can then be used in the reverse sense: when for instance in each
hexagon the individual values of n or k'fD’ are calculated, the assumed uniformity of
these quantities is checked.

Tt is not the aim of this publication to work out operation methods for complicated
problems; only some principles are given, illustrated by some examples.

7.2.1 Steady flow in a partly confined aquifer (one fluid)

Figure 100. — Section 4.2.4 dealt with parallef steady flow in a partly confined aquifer
where @ was given graphically, as indicated in the upper figure. One possible method
of calculation was the superposition of elementary systems, as represented in the
lower figures.

Figure 101. — The same principle can be followed if ¢’ is given in the nodes of a net,’
within a closed boundary, while outside that boundary ¢’ = 0 to infinity. Such an
arrangement might well be an element in a system of superposition, accounting for the
rise or fall of the phreatic aquifer due to irrigation or drainage in a given region:
The system can be considered as the sum of a series of elementary systems, each
defined by the value ¢ in one of the hexagons (A, shaded), and ¢ = 0 all around.
Each elementary system can.be calculated by replacing the hexagon with a circle of
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the same area, which gives a close approximation. The problem then reduces to that of
Section 4.3.2. With the formulas of this section, for ¢’ = 1 in the central hexagon,
the @ values in the surrounding points of the net can be calculated. A tracing paper
can be prepared, representing the nodes of the net, with the hexagon i in question in the
middle and the calculated ¢ values written under the points.

1f now, on the original drawing, the ¢ values are indicated above each point, the
combined influence of all hexagons at a point P can readily be calculated by laying the
central node of the tracing paper at P. Above and below a point A within the boundary
are then read respectively

~ ¢, which is the given value of ¢’ at A and

— (4, which is the  value at A, due to ¢’ = 1 in the elementary hexagon around P.
But the influence at A of a hexagon at P is the same as the influence at P of a hexagon
at A in formula: ¢, = @ Thus the iwo papers laid one on the other show for
any point A, written one above the other, ¢/ and ¢ 4., whose product is the ¢ value at
P due to the hexagon around A. When taking Ze,¢, over all points within the
boundary, the ¢ value at P is found. For another point Q the calculation is then re-
peated, placing the cenire of the tracing paper on Q, etc.

7.2.2 Nonsteady flow

One-Auid system; phreatic aquifer
In a phreatic aquiler surrounded by water courses the most general steady flow
system is defined by
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— The ¢ values at the boundary points, as functions of time,

— The n values at the points of the field, as functions of time.

- The ¢ values at the field points as an initial condition.

From these data d/¢ in the first time interval can be calculated for each field point,
and thus Ae from

do
dp =-" At
¢ at

which gives the ¢ values as an initial condition for the next interval 47. The calcula-
tion can then be repeated. A systematic error is made since the values of the beginning

of the interval are taken instead of the average over the interval, It is difficult to avoid

this inconvenience without compromising the simplicity of the method. The propaga-
tion of parallel sine waves through a net of squares with sides dx may be analysed to
show that both Ax and At are bound to an upper limit if the form and the velocity of
the waves is 10 be lound correctly.

Fig.102

Figure 102. — The calculation can be made for each hexagon separately according to
og 2 kD '
Pe— =0 — - — (6 — Zip,)
CEy _302(% ®a
if D is considered as a constant, or according 1o

op k 2 2
Fy 31/&2( Y B )

“if D is considered as a variable, in which case the reference level must be laid at the
bottom of the aquifer. _ '
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The water balance of an glementary prism is established. The outward flow
through the six sides is :

50, = Tkhp EM ~ 94

| a

| where & = 1/3a \/3 and X denotes the sum over A, B,...F. Otherwise written:
| ZQ. = 1/3 \/3kD(6on — Z0.)

| This flow equals the sum of the quantities of water received from recharge and
| released by a lowering of the surface over the shaded area S per unit time, or

| 20, = S('n—p@)
&

|

|

|

| 1

| where § = 3 a* 4/3. I follows that
|

I

|

I

a 2 kD
L —r (60w = T0.)

For variable D the derivation is similar.

Two-fluid system; phreatic aguifer
“The next problem bears a great resemblance to the pfevious one. The model represents
an island of irregular form, containing a phreatic aquifer and surrounded by the sea.
The flow system in very general conditions is defined by:
- The constant potential in the sea (reference level at sea level, 9” = ¢ = O along the
coast).
— The & values in the field points, varying in an irregular way with time,
- The elevation of the phreatic level, #, at each field point, as an initial condition.
— The elevation of the interface, Z, at each point, also as an initial condition.
Figure 103, — The values of /4 determine those of ¢, according to

@ = ph
The values of ¢ and Z determine those of ¢" according to

p—¢"=—(" ~y)Z

/ zZ
%;and é‘;—r can be found for each point of the field from

kDu

2
a

From these data
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where D7 = Dy + Z (Z negative) and D= —Z 4+ h

Then the values of 4 and Z at the beginning of the new interval can be found, and the
operation repeated.

Equations (1) and {2} are the mathematical expression of the water balance of ele-
mentary hexagonal prisms around node M, with heights of D" and D respectively.
Contrary to the previous derivations, the flow sections on the six sides have been
given the heights D'y, and D,,, respectively in the fresh and salt water layer. . Tf in
each water layer six different values had been dlstmgulshed the formulas would have
been complicated,

The water balance of the prism of height D'y is given by

—m%so =S kbD, M
at a

corresponding to Equation (1). The balance over the height D,, is given by

at ot a

|

l

|

I

|

!

| ne—m St m ‘Es SkbD, M~ 9
I

| corresponding to Equation {2). The left sides give the quantities supplied te the
| prism by the recharge and the displacements of surface and interface, where
| §=1/2a" /3 is the area of the hexagon. The right members give the outflow
| through the six sides, where & = 1/3a \/3 is the breadth of the seclions.

For the border points, where the flow section reduces to zero, reference is made to
Section 7.1.3.
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Two-fluid system; partly confined aquifer : :
Figure 104. — A similar problem can be posed for a partly confined aquifer: to cal-

¢ culate the transformations of the fresh-water body under an island, under the influence

R

of given ¢’ values (constant or variable with time), beginning with a given shape of the
interface. The sea level corresponds o 7. '

.

B - Fig.104

This problem has been treated in Section 6.3.3 for parallef flow. It wilf not be repeéted
here in detail; the main points of the method will merely be indicated.

| Two systems with the same interface are superposed for each timg interval At.
| System I is characterized by steady flow, and " = ¢ in the salt water layer.
From Z and ¢, ¢ is calculated according to '

' —p=—0G"—NZ .

2 kD i
- (60 — E(PA) =N

|

|

| )

| The equation
|

3
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accounting for the water balance in an elementary prism over the height D of the
fresh-water body enables N to be calculated for each node of the net. Then

k
N=—"{(¢ —
- (0 — ¢)

gives ¢, since N and ¢ are known. This value, ©',, is different from the 1rue
value, ¢ ,;;, (which may vary from one interval to another),
Thus System 11 is defined by ¢ values

L ! !
@i = @ P

. and furiher by homogeneous water, and ¢” = 0 in the sea. It can be calculated as
indicated in Section 7.2.1. As a result the values of N can be established in each

a6z
hexagon, and then those of—aT from

oz D" N
at D, m

|
|
l
|
I
|
l
|
1
|
|
|
|
I
|
|
I
I o
| (se'e Section 6.3.2), Thus the Z values at the beginning of the next time interval
| ‘can be evaluated and the calculation repe\aled for the next interval.

‘The calculation is rather ldng; moreover there is the inconvenience that the initial
form of the under-water part of the fresh-water body is difficult to establish by borings
and difficult to caleulate, Finally the extremity of that body moves, which causes
slight complications, since the movement in a time interval Ar generally does not
correspong to the advancement from one point of the net to another.

In contrast, very simple calculations can be made for the island itself or a part of it,
when data are known from measurements. When ¢ and Z are known at each point,
@" can be calculated from

9 — 9" = —( - NZ
0L . ' .
and G from the waterbalance of the salt water part of the elementary prism

8z _ 2 kD"
_ _\_ 6 " —_ z 4
ri ( Pa)

To give another example, if in a limited area the water levels (defining @) arc raised or
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lowered by irrigation or drainage, the influence can be calculated from the homoge-
neous fluid system discussed in Section 7.2.1. In particular, the change of & at each
node of the net inside or outside the project area can be found. At any point where Z is

: . 8L .
known from measurements the change in E’ due to the executed works, can be

found from
; 4Z__ D aN
' ot Dt om

As a final example, if for constant @' values in a limited area, ¢’ and ¢ at each node
are known from measurements, a check can be made on the assumed values of #
and &'/, applying

I

. for each node of the net separately.
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